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Control of Common Resonances in Bichromatically Driven Hydrogen Atoms
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We report the first combined experimental-theoretical study to realize and control the behavior of
common resonances in a periodically driven system. Experimental data for the ionization of H�n � 51�
atoms by a bichromatic (6 and 18 GHz), linearly polarized electric field pulse show how the relative field
phase can be used to control the ionization. 1D classical calculations show how this results from the
phase control of the pendulumlike, common resonances, whose existence requires, at lowest order, two
commensurate frequencies.
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introduced by Chirikov [5] gives a quantitative, classical
estimate for the ionization threshold field [1,3,4,6].

region with a nearly uniform distribution of substates in
the n � 51 manifold [4]. Because this corresponds to a
The distinctive feature of Hamiltonian, nonintegrable
classical dynamics is nonlinear resonance [1]. Manipu-
lation of resonance parameters allows one to control
nonlinear systems. Physics and engineering give many
macroscopic examples of such situations, ranging from
particles in storage rings and plasmas to electronic and
mechanical devices. The study of microscopic systems
raises the additional question of quantal-classical corre-
spondence. Understanding when and how correspondence
does or does not occur if classical chaos is involved is a
key issue in quantum chaos studies [2].

A linear system driven at its resonant frequency must
continue to absorb energy. A nonlinear system is differ-
ent. Consider an undamped pendulum subject to gravity.
Small amplitude librations have a period T fixed at the
linear-resonance value, Tr � 2�=!r. With increasing
amplitude, T increases, diverging logarithmically on
the separatrix (inverted pendulum) between bounded li-
brational motion and unbounded, rotational motion. To
put more energy into a librating pendulum driven at
frequency ! � !r requires either increasing the drive,
decreasing!, or both. This is the most elementary control
of a nonlinear resonance.

When a more complicated nonlinear Hamiltonian sys-
tem is periodically driven, a periodic sampling of its
orbits (Poincaré section) generally shows many nonlinear
resonances. The example used in this Letter is the peri-
odically forced, 1D hydrogen atom [3]. In atomic units
(qv, [4], p. 292) its Hamiltonian is H �x; p; t� � p2=2�
V�x� � ��t�xF�t�; where V�x > 0� � �1=x, V�x � 0� �
1, F�t� �� � F�t� is a periodic electric field, and ��t� is
an envelope function. Each of its nonlinear resonances
has different pendulum parameters. Deterministic chaos
occurs first near separatrices. Increasing the driving in-
creases of the width of resonance zones and their sur-
rounding chaotic layers until overlapping of neighboring
resonances leads to global chaos and the onset of ioniza-
tion of the classical atom. The resonance overlap criterion
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The general description of quantal nonlinear resonance
is known [7], and some details of the quantal-classical
correspondence have been worked out for the driven 1D
[8] and 3D [9] H atom. Comparisons [4] of a large body of
experimental data with the results of classical and quantal
calculations have shown where to expect quantal-
classical correspondence in the ionization behavior. The
most important parameter is the scaled frequency n3! �
�, which quantally (classically) is ! over the �n � 1
frequency splitting for principal quantum number n	 1
(over the Kepler frequency !k). When � * 2, quantal
effects such as dynamical localization raise quantal
ionization thresholds above classical values [10–12].
For lower values of �, one usually finds good quantal-
classical agreement until � gets so low that the ioniza-
tion mechanism becomes quasistatic: quantal tunneling
through (classical escape over) the Coulomb-Stark poten-
tial barrier [13]. We are concerned here with � 
 0:12,
where the ionization mechanism is not quasistatic [14].

We report in this Letter the first, combined experi-
mental, numerical, and approximate analytical study to
realize and control the behavior of nonlinear common
resonances (CR), so named [15] because they require
both driving frequencies. What we call independent reso-
nances (IR) are different; IR remain when one or the
other of the two bichromatic field amplitudes is zero. We
realize CRs with excited H atoms driven by a linearly
polarized electric field consisting of two commensurate
frequencies (2f). We show how the relative field phase can
be used to affect the details of CRs and, thereby, to con-
trol the ionization probability. Our comparisons between
experiment and calculations show excellent quantal-
classical correspondence near the onset of ionization.

Our experiment uses a 14.6 keV beam of n � 51 H
atoms. Laser excitation of the atoms occurs in a static
electric field and raises them to an individual quantal
substate, but subsequent stray-field-induced transitions
cause atoms to arrive at the microwave interaction
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microcanonical ensemble of classical orbits in three spa-
tial dimensions, our experiment uses ‘‘3D atoms.’’

The H atoms cross a linearly polarized, microwave
field traveling in a WRD-500 double-ridge waveguide;
atoms enter and exit via 0.25 mm holes drilled in oppos-
ing sidewalls. The waveguide operates single mode from
below 4.5 to above 18 GHz, and each atom sees the spatial
variation of the mode as an envelope 0 � ��t� � 1 that
slowly modulates the peak electric amplitude F. The inset
in Fig. 1 shows the first half of ��t�, which is symmetric
about t � 0. To compare time scales, its 2 ns flat top lasts
about 100 Kepler periods of an n � 51 electron and
12 field oscillations, say, of !=2� � 6 GHz.

Generation of the 2f field begins with a comb generator
that produces harmonics of a synthesized 1 GHz signal. A
divider splits the comb-generator output, and a tunable fil-
ter in each arm selects the desired harmonic. After am-
plification and suppression of broadband amplifier noise
with filters, the harmonics are combined and injected into
the waveguide. Hereafter, we use subscripts on! and F as
follows: � and � denote unspecified frequencies; a num-
ber gives a specific frequency in GHz. The bichromatic
field is Fbi�t� � �F� sin�!�t

0� � F� sin�!�t
0 ���, with

!� > !� and t0 � t� t0. We verify stability of � at the
few degree level and calibrate the F� and F� scales to 5%
[16]. Because atoms enter the field at random times t0, the
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FIG. 1. Ionization curves for n � 51 H atoms. Thick lines:
experiment with 3D atoms. Thin solid (dashed) lines: quantal
(classical) 1D calculations. Thick (thin) curves use the lower
(upper) F6 scale for 6 GHz peak field amplitude. One-
frequency (1f) results are for the 6 GHz field alone. Two-
frequency (2f) results are with an 18 GHz field added, with
F18 � 6 V=cm, for relative phase � � �=3 (leftmost group)
and � � 0 (rightmost group). Arrows: resonance-overlap esti-
mates for onset of global chaos for the two 2f cases and one 1f
case. Inset: First half of the envelope function ��t� for the
microwave amplitude; it is symmetric about t � 0.
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experiment averages the phase between the electron mo-
tion and field oscillation [17].

The three thick curves in Fig. 1 show measured ioniza-
tion probability [18] Pion vs F6 for 3D H�n � 51� atoms.
For two different values of�, the 2f curves in Fig. 1 show
Pion vs F6 when an 18 GHz field with F18 � 6 V=cm is
present. Between them lies the 1f curve obtained with
6 GHz alone, i.e., with F18 � 0. Let us focus on 10%
thresholds, viz., where Pion first crosses 0.1: the 1f value
is about 96 V=cm; the 2f values are, respectively, about
107 V=cm for� � 0 and 85 V=cm for� � �=3. Figure 1
clearly demonstrates that changing � exerts significant
control over the 2f ionization.

We need to explain this behavior. For a 1:3 fre-
quency ratio, the peak 2f-field amplitude minimizes at
jF6 � F18j for � � 0 and maximizes at �F6 � F18� for
� � �=3. The phase dependence would be trivially ex-
plained if the onset of ionization were determined en-
tirely by the peak 2f-field amplitude, as would occur for
the quasistatic case mentioned earlier [13,14]. Here, rela-
tive to the 1f 10% threshold, about 96 V=cm, andF18 fixed
at 6 V=cm, trivial behavior would be a 10% threshold of
96� 6 � 102 V=cm for � � 0 and 96� 6 � 90 V=cm
for � � �=3. That the actual 10% thresholds, about 107
and 85 V=cm, respectively, are significantly above and
below these values stimulates a dynamical explanation
for the nontrivial phase dependence.

The six thin curves in Fig. 1 come from calculations
using H �x; p; t� with Fbi�t� and the experimental ��t�.
To simulate the experiment, we average the calculations
over t0 but fix the relative field phase �. The three, thin,
solid (quantal 1D: q1D) curves come from our numerical
integrations of the time-dependent Schrödinger equation
on a 1D, bound basis n 2 �35; 220. We define Pion to be
the fraction of population rising to n values above the
cutoff nc � 130, the same as in the experiment [18]. The
three, thin, dashed (classical 1D: c1D) curves come from
our Monte Carlo integrations of Hamilton’s equations
[19]. Pion is defined to be the fraction of orbits rising to
classical action I > Ic � nc.

Previous work has shown why a 1D model explains the
onset of ionization of 3D H atoms by linearly polarized
microwaves: the driving field elongates 3D atoms along
the polarization axis, allowing the driven electron to find
the 1D escape route to ionization [3]. However, direct
comparison of 1D calculations with 3D data requires
care. The driving field supplies the energy leading to
ionization when the electron passes near the proton.
Because all 1D bound orbits hit the nucleus, whereas
most 3D orbits do not, in the 1D model ionization curves
rise more rapidly and ionization thresholds are lower [20].

To offset this systematic difference and facilitate 1D-
3D comparisons, we shift the upper F6 axis by 15V=cm
and use it for calculated 1D curves. The lower F6 axis is
used for the experimental 3D curves. Note that field
differences are the same for both scales, and we make
1D-3D comparisons only near the onset of ionization.
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That the q1D and c1D calculations agree and reproduce
the shifts of experimental 10% thresholds is a striking ex-
ample of quantal-classical correspondence that will jus-
tify our using a 1D classical model to demonstrate how
the behavior of CRs explains the observed 2f phase de-
pendence. First, we show in Fig. 2 Poincaré sections of or-
bits of H �x; p; t� at field amplitudes well below the onset
of global chaos. IRs occur when !:!k� j:m, where j;m
are positive integers. In Fig. 2(a), calculated for F6�
30V=cm and F18�0, IR1 at !:!k�1:8 is too thin to
be seen, and IR2 at 1:7 is barely evident. In Fig. 2(b),
calculated for F18�6V=cm and F6�0, IR1 at !:!k�
3:8 and IR2 at 3:7 are both too thin to be seen. [The
degeneracy in action n of IRs in Figs. 2(a) and 2(b) occurs
because !��3!�.] Conversely, both fields together give
significant common resonances; Fig. 2(c) [2(d)] shows
CR1 and CR2 for F6�30V=cm for ��0 [for ���=3].

2f driving gives more parameters to vary to control
resonance overlap at higher field amplitudes. The simplest
scenario, investigated for plasmas in [21] and H atoms in
[15,22], uses a choice of !� that puts one of its IRs
midway between two IRs of !�. But here we stress the
role of CRs, which require, at lowest order, both driving
frequencies; they occur at resonant values of action nr �
��1=3 such that

j� � ��m�!� � ��m�!�; (1)

where j� 1; m�;m� are non-negative integers and
��;�� � �1. We show next how the CRs in Figs. 2(c)
and 2(d) affect the ionization dynamics with the stronger
driving of Fig. 3 and that this explains the experimental
results and calculations in Fig. 1.

We approximate the time-dependent Hamiltonian
near a CR by a time-independent resonance Hamil-
tonian whose complicated form is worth examining:

H r � �
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FIG. 2. Computed Poincaré sections of some 1D H atom
orbits. CR1,CR2 (IR1,IR2) label common (independent) non-
linear resonances; see the text. (a) 6 GHz field with F6 �
30 V=cm. (b) 18 GHz field with F18 � 6 V=cm. (c),(d) 6 GHz
field with F6 � 30 V=cm and 18 GHz field with F18 � 6 V=cm
both present, for relative phase � � 0 (c) and � � �=3 (d).
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 � j�!�a��a�cos�����m����m��m��1��2 ;

(4)

subject to the constraint, Eq. (1). In Eqs. (2)–(4), � is
the relative phase defined earlier; ! and X��n�nr�
are angle and action variables, respectively; J is an ordi-
nary Bessel function and J0 its derivative; xj� j�1J0j�j�;
a�;��3nrF�;�=!�;�.

We need resonance widths W to use Chirikov’s overlap
criterion [1,5], but unless there is classical-quantal cor-
respondence, the classical estimate is of little use to the
experiment. A semiclassical estimate of the number of
quantal states lying within a resonance is A=h, where A
is the area within the separatrix and h is Planck’s con-
stant. Because the jury is still out (see Table 2 in [4])
on the general question of how small (large) A=h must
be for there to be quantal (classical) behavior, specific
experimental/theoretical comparisons are needed and
useful.

Though for 1f resonances, j� � m!, W and A both
grow as Fm=2 up to ionizing amplitudes [23], this is not
the case for CRs. Which terms in the double sums over
Bessel functions in Eq. (3) contribute most to a CR’s
growth depends on values of parameters; we find that
neither W nor A of a CR need increase monotonically
with amplitude(s).

It helps to consider specific examples. For F18�
6V=cm and variable F6, the double sums for CR1 are
dominated by indices �j;��m�;��m��� �1;0;7�, �1;1;4�,
and �1;2;1�. At the onset of ionization A=h for CR1 is
about 2.1 for both ���=3 (at F6� 70:5V=cm) and
FIG. 3. Computed Poincaré sections (a),(c),(e) and analytical
separatrices (b),(d),(f); see the text. In (a),(b) F6 � 70:5 V=cm
and F18 � 0; IR1 and IR2 do not overlap. In (c)–(f) F6 �
70:5 V=cm and F18 � 6 V=cm; Eqs. (2)–(4) give analytical
separatrices for CR1 and CR2. In (c),(d) � � 0; CR1 and
CR2 do not overlap. In (e),(f) � � �=3; CR1 and CR2 overlap.
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��0 (at F6� 104:5V=cm). The double sums for CR2
are dominated by �j;��m�;��m��� �1;0;8�, �1;1;5�, and
�1;2;2�. At the onset of ionization A=h for CR2 is just
below 0.9 for both ���=3 (F6� 70:5V=cm) and �� 0
(at F6� 104:5V=cm); but A=h is significantly higher,
viz., 1.4, for smaller, nonionizing values of F6 (e.g., for
��0 and F6� 90V=cm).

With such small values of A=h, no more than about
two, it is surprising that the ionization mediated by these
CRs exhibits such a fine quantal-classical correspon-
dence. For F6 � 70:5 V=cm, Figs. 3(c) and 3(e) show com-
puted Poincaré sections for CR1 and CR2 [cf. Figs. 2(c)
and 2(d)]; Figs. 3(d) and 3(f) show analytical separatrices
found numerically from Eqs. (2)–(4). Note that though
Poincaré sections with no external driving( not shown)
give horizontal lines (action � constant), nonzero driving
‘‘bends’’ them, particularly so for ���=3 in Figs. 2(d)
and 3(e). Because our analytical model ignores all but the
considered resonances, viz., IR1 and IR2 or CR1 and
CR2, respectively, the separatrices in Figs. 3(b), 3(d),
and 3(f) are not bent.

For the 1f case with F18 � 0, that computed orbits near
n � 51 in Fig. 3(a) are not chaotic is consistent with the
lack of overlap of IR1 and IR2 in Fig. 3(b). (The chaos
near n � 53 occurs because IR2 overlaps with higher
resonances, not shown here.) For the 2f case with F18 �
6 V=cm and � � 0, that computed orbits near n � 51 in
Fig. 3(c) are not chaotic is consistent with lack of overlap
of CR1 and CR2 in Fig. 3(d). For the 2f case with F18 �
6 V=cm and � � �=3, that global chaos in Fig. 3(e)
‘‘wipes out’’ CR2 and reaches down to CR1 is consistent
with the overlap of CR1 and CR2 in Fig. 3(f).

For the data in Fig. 1, the results in Fig. 3 give a neat
classical explanation for the onset of ionization for � �
�=3 and for the lack of ionization at these field ampli-
tudes for � � 0 and the 1f case. Arrows in Fig. 1 indicate
the values of F6 needed for resonance overlap. That each
arrow in Fig. 1 is near the corresponding onset of ioniza-
tion provides strong support for the classical interpreta-
tion we present in this Letter.

In summary, we use CRs to control microwave ioniza-
tion of hydrogen atoms by a phase-locked, bichromatic
field. We believe this is the first experimental realization
and application of CRs. Given the theoretical existence of
CRs elsewhere, e.g., in plasma wave heating [21], we
expect that they will be useful for control of a wide
variety of bichromatically driven systems.
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