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Close-Coupling Approach to Coulomb Three-Body Problems
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The convergent close-coupling method is shown to overcome the remaining discrepancies with
experiment of electron-hydrogen ionization. Consequently, this method is able to calculate accurately
the Coulomb three-body problems which include electron collisions with hydrogen and helium (within
the frozen core model), and helium double photoionization at all incident energies and kinematical or
geometrical arrangements of the outgoing electrons.
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the formalism, but rather with limited computational
resources.

of the space exchange operator Pr, and h�fj is an eigen-
state of the asymptotic Hamiltonian. Since I�N� ensures
There has been much progress in the theoretical
description of electron-atom collisions over the last de-
cade or so, with the latest highlight being the numerical
solution of the electron-impact ionization of hydrogen
problem using the exterior complex scaling (ECS) tech-
nique by Rescigno et al. [1]. Until this time most of the
progress had come from the many implementations of the
close-coupling (CC) method, from the most widely used
R-matrix approach [2], and its variants, through to our
own momentum-space-based convergent close-coupling
(CCC) method [3]. The CC techniques were developed
in the early 1930s by Massey and Mohr [4] who gave a
general formalism for treating the discrete atomic tran-
sitions, vital in numerous scientific and industrial appli-
cations. The key idea is to expand the total wave function
using square-integrable states. Since the close-coupling
equations yield stationary amplitudes upon variation in
the expansion of the total wave function it is not surpris-
ing that they have been so successful in treating discrete
transitions in widely varying collision systems. However,
the usage of the square-integrable states suggests that the
formalism will be inadequate for treating ionization.

Here we shall see that the extension of the CCC
method to calculating ionization processes, as suggested
by Bray and Fursa [5], also yields accurate ionization
amplitudes solong as sufficient computational resources
are utilized in their evaluation. Given the extensive lit-
erature on the complexity of the Coulomb three-body
problem, see Rudge [6] and Peterkop [7] for example,
the CCC approach is astonishingly simple, and has been
severely criticized [8,9], but rebutted [10,11]. We also
began doubting the method when application to ioniza-
tion of hydrogen with equal-energy outgoing electrons
proved less than satisfactory [12]. In addition, the com-
plete presentation of the ECS results [13], which yielded
unprecedented agreement with experiment, and cor-
rection of inconsistencies in the experiment at 17.6 eV
[14], also made us question the formalism [5]. However,
we shall show that the problem proved to be not with
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The primary ingredient of the CCC method is the
complete Laguerre basis
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�2l� 1� k�!

�
1=2

� ��lr�l�1 exp���lr=2�L2l�2
k�1 ��lr�; (1)

where the L2l�2
k�1 ��lr� are the associated Laguerre poly-

nomials, and k ranges from 1 to the basis size Nl. In the
case of hydrogen, the target Hamiltonian H2 � K2 � V2

is diagonalized in this basis yielding (pseudo) target
states j��N�

n i, with energies ��N�n , which for each l 	 lmax

satisfy

h��N�
m jH2j�

�N�
n i � �mn�

�N�
n ; (2)

whereN �
Plmax
l�0Nl.We use the �N� superscript to indicate

the general dependence of the states on both the basis size
Nl and the Laguerre exponential falloff parameter �l.

It is convenient to define the projection operator in the
target space

I�N�2 �
XN
n�1

j��N�
n ih��N�

n j; (3)

with the understanding that the usage of the complete
basis (1) ensures that

lim
N!1

I�N�2 � I2; (4)

the corresponding true identity operator. Then for the
total Hamiltonian H acting to the left, energy E and
spin S of the electron-hydrogen system we write the
close-coupling approximation for the scattering ampli-
tudes as [5]

h�fjH� Ej�S��
i i

 h�fjI
�N�
2 �H� E��1� ��1�SPr�I

�N�
2 j �S��

i i; (5)

where the required symmetry is imposed with the usage
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that the target-space electron is always bounded the
asymptotic Hamiltonian K is taken to be the same for
both discrete excitation and ionization, namely K �
K1 �H2. Then for discrete transitions h�fj � hkf�fj,
where �f is a discrete eigenstate and kf a plane wave.
For ionizing collisions h�fj � hkfq

���
f j, where q���

f is a
Coulomb wave of energy q2f=2, and the amplitude (5) for
273201-2
some initial state i may be written as

f�NS��kf; qf� � hq���
f j��N�

f ihkf�
�N�
f jT�NS�j��N�

i kii; (6)

where q2f=2 � ��N�f , and we used the fact that

hq���
f j��N�

n i � �fnhq
���
f j��N�

f i. The excitation amplitudes

T�NS� are found by solving the close-coupling equations
in momentum space [3]
hkf�
�N�
f jT�NS�j��N�

i kii � hkf�
�N�
f jV�NS�j��N�

i kii �
XN
n�1

Z
d3k

hkf�
�N�
f jV�NS�j��N�

n kihk��N�
n jT�NS�j��N�

i kii

E� i0� ��N�n � k2=2
: (7)
The sum above effectively approximates a sum over the
true negative-energy eigenstates and an integral over the
true target continuum, with the energy integration ending
at E on the energy shell.

The formulation (6) is extraordinarily simple and some
immediate problems are apparent. For any qf < kf there
are two independent amplitudes f�NS��kf; qf� and
f�NS��qf; kf� that arise from excitation of pseudostates
of energy ��N�f � q2f=2 and ��N�f0 � k2f=2, respectively.
Superficially, there appears to be a double counting prob-
lem, yet within a unitary formalism. Following a numeri-
cal study a resolution was found by suggesting that the
scattering amplitudes in (7) form a step-function with

lim
N!1

hkf�
�N�
f jT�NS�j��N�

i kii � 0 for k2f=2< ��N�f ; (8)

and hence the on-shell target-space energy integration
in (7) effectively ending at E=2 [15]. Further analysis of
the problem by Stelbovics [16] suggested that the close-
coupling expansion behaves like a Fourier expansion of a
step-function with convergence of the amplitudes at the
step to half the step height, thereby explaining the ob-
served numerical behavior. The most convincing example
of this was recently demonstrated by Scott et al. [17],
who showed how the step-function is approached with
increasing size of the calculations, and that the average
over the diminishing oscillations yields physically accu-
rate results.

Though the f�NS��qf; kf� do not satisfy the expected
symmetry condition f�S��qf; kf� � ��1�Sf�S��kf; qf� gen-
erally, they do so for qk � kf [12]. The doubling at
qf � kf, and satisfying the required symmetry is
achieved by writing the final CCC amplitude F�NS� for
comparison with experiment as

F�NS��qf; kf� � f�NS��qf; kf� � ��1�Sf�NS��kf; qf�; (9)

with the understanding that for qf � kf one of the two
terms on the right-hand side above is negligible for suffi-
ciently large N.

This should have been the end of the story, particularly
since it confirmed the utility of the CCC method for
electron-impact ionization of helium as explained by
Bray, Fursa, and Stelbovics [18]. Similarly for the case
of helium double photoionization, see Kheifets and Bray
[19], and references therein. However, not so in the case of
e-H ionization with equal-energy outgoing electrons [12],
thus bringing into question the entire formalism.

It turns out that there were two problems with the
earlier calculations [12]. The primary problem was that
the then available computational resources did not allow
calculations with large-enough basis sizes Nl. This re-
sulted in having to vary the �l to ensure a pseudostate
energy at exactly the value of interest in the experiment.
Since the CCC amplitudes (6) are available only at the
energies of the pseudostates we had to avoid interpolation
of complex numbers across sparsely spaced energies. It is
the systematic variation of the �l, as Nl were varied, that
resulted in the apparent convergence to the wrong result.

Here we consider the key test case of 17.6 eV e-H
ionization of atomic hydrogen with 2 eV outgoing elec-
trons. The initial measurements of this case have been
recently revised [14], and are now much more internally
consistent than was the case earlier [12].

The CCC calculations depend on the parameters lmax,
Nl, and �l. The earlier 17.6 eV calculation [12] had
lmax � 5, Nl � 20� l, and �l  0:8, which was varied
to ensure one pseudostate energy was exactly 2 eV for
each l. The results presented here are from a CCC calcu-
lation which has lmax � 5, Nl � 50� l, and �l � 2. The
usage of the much larger Nl and �l ensures that the
continuumlike pseudostates go out considerably further
than in the earlier calculation. It is more important to
have accurate oscillations in the continuumlike pseudos-
tates, which come from the larger Nl, than attempting to
extend the states by taking a smaller �l. The much denser
discretization allows to take a single value for �l and then
interpolate amongst the complex amplitudes to obtain the
result at 2 eV. The combined usage of Nl � N0 � l and
�l � � ensures a commensurate treatment of the target-
space l, and leads to the most efficient rate of convergence.

We begin with the largest cross sections measured,
which are for the fixed-!A geometries. These are pre-
sented in Fig. 1 together with the ECS and CCC theories.
The experimental uncertainty in the absolute value deter-
mination is �40% [20], and so the uniform multiplication
of experiment by 0.7, for best visual fit to the theories, is
273201-2
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FIG. 2. Same as for Fig. 1, but fot the fixed-!AB geometries.
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FIG. 1. Coplanar triply differential cross sections, in the
specified fixed-!A geometries, for 17.6 eVelectron-impact ioni-
zation of atomic hydrogen with 2 eV outgoing electrons. The
experimental data, with �40% uncertainty in overall absolute
value, are the full set presented in Ref. [14] multiplied uni-
formly by 0.7 for best visual comparison to the theory. The ECS
calculation is from Ref. [13]. The CCC calculation is outlined
in the text.
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well within this uncertainty. We see excellent agreement
between experiment and the two theories. The theories
and the experiment are barely distinguishable, a much
improved result on the comparison presented earlier [12].

The so-called fixed-!AB geometries keep the angle
between the two detectors constant. They succinctly cap-
ture the underlying physical processes, and are presented
in Fig. 2. Going down from the !AB � 90� to !AB � 180�

the electrons are detected further and further apart, and
consequently the cross sections generally increase.
Agreement between the two theories and experiment is
again excellent.

The last geometry for which data are available is the
so-called doubly symmetric geometry (Fig. 3), where the
two electrons of same energy go out on the opposite sides
of the incident beam, i.e., !A � �!B. Once more we see
generally good agreement between theories and experi-
ment, except at the very forward angles. Here the present
calculation shows its limitations since near-zero cross
273201-3
sections are expected. The problem comes from inaccura-
cies associated with the complex amplitude interpolation.
Here we require large complex numbers to cancel each
other to yield near-zero cross sections.

The CCC results presented here confirm that the evalu-
ation of the ionization amplitudes from the simple Eq. (6)
after solution of (7) does result in accurate amplitudes so
long as N is sufficiently large. Such calculations are now
practical owing to the ever-growing computational power.
The CCC calculations have also been performed at the
other incident energies of 15.6, through to 30 eV where
ECS and experimental data are available. Similarly
273201-3
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FIG. 3. Same as for Fig. 1, except for the !A ��!B geometry.
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excellent agreement has been found at all energies (see
[21] for the 25 eV case), and will be presented subse-
quently together with details of convergence studies. Here
we just mention that the same value of �l � 2 was able to
be used with Nl � 65� l being necessary for satisfactory
convergence at the lowest energy through to Nl � 20� l
at 30 eV.

The recent calculations also explain why the CCC
method worked so well in solving the closely related
problems of double photoionization and electron-impact
ionization of helium. In both these cases the CCC calcu-
lations had to obtain an accurate representation of the
He� 1s orbital, and hence had �l typically around twice
the value used for hydrogen previously. This allowed
denser discretization of the continuum and hence smaller
variation in the �l. The shorter range of the interactions
also contributed substantially to the ease of the numerical
solution.

While we have concentrated on the most computation-
ally difficult case where the two outgoing electrons have
the same energy, the generally more probable case of ioni-
zation with unequal energy electrons requires some dis-
cussion. In these cases, taking qf < kf in (6), we find that
widely varying calculations yield nearly identical results
so long as account is taken of how the underlying Fourier
expansion is behaving. Since we know ab initio the size of
the step, the integral, and that the oscillations are about
the true values, accurate amplitudes are able to be ob-
tained from relatively small calculations. We have com-
pared the doubly differential cross sections arising from
the present calculations with those of the ECS theory in
steps of 0.25 eV, and found excellent agreement in shape
and magnitude. Alternatively, increasing N yields dimin-
ishing oscillations in the calculated amplitudes, and may
be used to check the results from smaller calculations, as
most recently confirmed by Scott et al. [17].

In summary, the present results now give us a complete
picture of how the close-coupling method works. The
promise of CCC being a ‘‘complete scattering theory,’’
one which is able to describe all possible electron-atom
collision processes of practical interest [22], has now been
273201-4
realized. We acknowledge the great contribution to the
field made by the development of the ECS theory for the
e-H collision system [1]. Our strength is the ready gen-
eralization to targets more complicated than hydrogen,
with success in helium double photoionization and he-
lium one-electron excitation and ionization already estab-
lished. We now suggest that all these Coulomb three-body
problems have been effectively solved.
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