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We study the stability of quantum states of macroscopic systems of finite volume V. By using both the
locality and huge degrees of freedom, we show the following: (i) If square fluctuation of every additive
operator is O(V) or less for a pure state, then it is not fragile for any weak classical noises or weak
perturbations from environments. (ii) If square fluctuation of some additive operator is O(V?) for a pure
state, then it is fragile for some of these. (iii) If a state, pure or mixed, has the ““cluster property,” then it
is stable against local measurements, and vice versa. Among many applications, we discuss the

mechanism of symmetry-breaking in finite systems.
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The stability of quantum states of macroscopic sys-
tems, which are subject to weak classical noises (WCN5s)
or weak perturbations from environments (WPEs), have
been studied in many fields of physics as the decoherence
problem [1]. However, most previous studies assumed that
the principal system was describable by a small number of
collective coordinates. Although such models might be
applicable to some systems, applicability to general sys-
tems is questionable. As a result of the use of such models,
the results depended strongly on the choices of the coor-
dinates and the form of the interaction H;, between the
principal system and a noise or an environment [1]. For
example, a robust state for some H,, can become a fragile
state for another H;,.. However, macroscopic physics and
experiences strongly indicate that a more universal result
should be drawn.

In this Letter, we study the stability of quantum states
of finite macroscopic systems against WCNs and WPEs.
We also propose a new criterion of stability; the stability
against local measurements. We study these stabilities
using a general model with a macroscopic number of
degrees of freedom N. In addition to the fact that N is
huge, we make full use of the locality [2,3]—*additive”
observables must be the sum of local observables over a
macroscopic region, the interaction I:Iim must be local,
and measurement must be local. By noticing these points,
we derive general and universal results. Among many
applications of the present theory, we discuss the mecha-
nism of symmetry-breaking in finite systems.

Macroscopic quantum systems.—As usual, we are in-
terested only in phenomena in some energy range AE and
describe the system by an effective theory which cor-
rectly describes the system only in AE. For a given AE,
let M be the number of many-body quantum states in that
energy range. Then N ~ In/M is the degrees of freedom of
the effective theory. Note that N can become a small
number even for a system of many degrees of freedom
when, e.g., a non-negligible energy gap exists in AE, as in
the cases of a heavy atom at a meV or lower energy range
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and SQUID systems at low temperatures. We here exclude
such systems, because they are essentially systems of
small degrees of freedom. Namely, we say that a system
is macroscopic (for a given AE) only when its N is a
macroscopic number. We further assume that the system
extends homogeneously [4] over a volume V and that
boundary effects are negligible. Since AE sets a mini-
mum length scale €, V ~ N¢¢ in d dimension. We there-
fore say that V is also macroscopic. We study the stability
of states of such a macroscopic system, when it is subject
to WCNs, WPEs, and local measurements. The Hamil-
tonian H of the system can be a general one which has
only short-range interactions.

Measures of the correlations between distant points.—
As we show later, correlations between distant points are
important. As a measure of the correlations, we first
consider the cluster property. In infinite systems, a quan-
tum state is said to have the cluster property if
(8a(x)8b(y)y — 0 as |x — y| — oo for any local operators
a(x) and b(y) at x and y, respectively, where da(x) =
a(x) —<a(x)) and 8b(y) = b(y) —(b(y)) [6]. Here, by a
local operator at x we mean a finite-order polynomial of
field operators and their finite-order derivatives at posi-
tion x [3]. We generalize the concept of the cluster prop-
erty to the case of finite systems as follows [9]. For a
small positive number €, we define a region () (e, x) by its
complement (e, x)¢, which is the region of y in which

(6a(W8b(I = ey(dat(08a(mX3bT(1)ob(y) (1)

for any local operators a(x) and b(y). Let Q(e) =
sup, |Q(e, x)|, where |[Q(e x)| denotes the size of
Q(€, x). Intuitively, Q(e) is the size of the region outside
which correlations of any local operators become negli-
gible. We consider a sequence of homogeneous [4] sys-
tems with various values of V and associated states, where
the shapes of V’s are similar to each other. We say that the
states (for large V) of the sequence have the cluster
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property if ) (€) for any € > 0 becomes independent of V
for a sufficiently large V. This means that Q(e) < V if
one takes V large enough. Note that a small number of
Bell pairs do not destroy the cluster property: the lack of
the cluster property means a macroscopic entanglement.
As a second measure, we consider fluctuations of additive
quantities. A physical quantity A is additive if A = AV +
A®@ when we regard the system as a composite system of
subsystems 1 and 2. Thermodynamics assumes that any
states in a pure phase satisfies ((§4)%) = o(V?) for every
additive quantity. In particular, if a state of a (quantum or
classical) system satisfies ((§A4)?) = O(V) for every addi-
tive quantity, we call it a “normally fluctuating state”
(NFS). In finite quantum systems, on the other hand, there
exist pure states for which some of the additive operators
have anomalously large fluctuations; ((8A)%) = O(V?2).
We call such a pure state an “anomalously fluctuating
state”” (AFS). The locality requires that additive operators
of quantum systems must have the following form: A=
Y ey @(x), where a(x) denotes a local operator at x. It is
easy to show that an AFS does not have the cluster
property, hence is entangled macroscopically. For infinite
quantum systems, there is a well-known theorem: Any
pure state has the cluster property [2]. Therefore, AFSs
converge (in the weak topology) into mixed states as V —
oo, although they are pure states in finite systems [10].
Since AFSs are such unusual states, they are expected to
be unstable in some sense. We now clarify in what sense,
how, and why unstable.

Fragility—We say a quantum state is “fragile” if its
decoherence rate I, Eq. (3), behaves as I ~ KV'*%, where
K is a function of microscopic parameters, and J is a
positive constant. To understand the meaning of the fra-
gility, consider first the nonfragile case where 6 = 0. In
this case, I'/V is independent of V. This is a normal
situation in the sense that the total decoherence rate I is
basically the sum of local decoherence rates, which are
determined only by microscopic parameters. On the other
hand, the case where § > 0 is an anomalous situation in
which I'/V ~ KV?. Note that this can be very large even
when K is small, because, by definition, a macroscopic
volume is huge. This means that a fragile quantum state
decoheres due to a noise or environment at an anoma-
lously great rate, even when the coupling constant be-
tween the system and the noise or environment is small.

Fragility in WCN.—The point of the present theory is
the locality [2]. For the Hamiltonian H,, of the interac-
tion with a classical noise, the locality requires that it
should be the sum of local interactions [11];

Hy =2 flx nalx). )

x€V

Here, A is a small positive constant, f(x, f) is a random
classical noise field with vanishing average f(x, 1) = 0,
and a(x) is a local operator at x. We assume that
f(x, )f(x', ') depends only on x — x’ and 7 — ¢ and that
its correlation time 7, << 1/I" [12]. We denote the spectral
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intensity of f by g(k, ) [13], which is positive by defi-
nition. A pure state | W) at t = 0 evolves for ¢ > 0 by the
total Hamiltonian H + H,,, and the density operator is
given by p (1) = [V(1)){W(r)|. Since we are interested in
the dependence of I on the initial state, we study an early
time stage 7. << t < 1/I" and define I' as the increase rate
of the « entropy of @ = 2 in this time region;

1d .
= - EE1nTr[p(t)2]|Tc<<t<<l/r‘ (3)

Even when H,, = 0, |¥) generally evolves by H. Since
we are interested in the instability induced by H,,, we
consider states which do not evolve by H in this time
region, i.e., exp(—iH1)|W) = exp(—i(H)r)|¥) for such r.
(However, see [14].) Moreover, since we are interested in
the case of weak noise, we evaluate I' to O(A?). By
dropping nondissipative contributions from H;,, because
they can be absorbed in A as renormalization terms, we
find T = A2, g(k, (H) — w,)(n|8A; V)| Here, |n) is
an eigenstate of H, with eigenenergy w, (which may be
degenerate), and 8A, = A, — (V|A;|¥), where A, =
ZXEV &(-x)e_ikx' If we put Zn g(kr <IA{> - (1)”) X
[(nI3AV)R = g(k) S, [tnl 54,192 then g(k) may be
interpreted as a typical (average) value of g(k, (H) — w,,)
for relevant n’s, because the two factors in the n» summa-
tion are both positive. This interpretation would be good
at least for the V dependence, which is our primary
interest. We then obtain the simple formula

I'= A2 g(k)(WISA]8A,|W). “4)
k

Note that A, is an additive operator because a(x)e ** is a
local operator. When @(x) is a spin operator, e.g., Ak for
k = /€ is the staggered magnetization.

When |V¥) is an NFS, (‘Ifléflzéﬁkl\lf) = O(V) for any
Ay, hence I' = A20(V)Y, g(k). Since 3, gk, w, —
wy) = [flx 0f(x 0)ei@n =)' dt does not depend on V,
neither does Y, g(k). We thus find that NFSs are not
fragile in any WCN. When |W) is an AFS, on the other
hand, (‘I’ISAZSAA‘I’} = O(V?) for some A, i.e., for some
a(x) and some k = k. Hence, if H;,, has a term that is
composed of such a(x)’s, then

L= 20(V)glke) + 220(V) > gk), (5
k#kq

and the AFS becomes fragile if g(ky) = O(V~'*?), where

6 > 0. Therefore, an AFS is fragile in some WCN.
Fragility in WPE.—We obtain similar results for
WPEs. From the locality, the interaction with an
environment £ should be the sum of local interactions;
H, = Azxevf(x)&(x) [11]. Here, f(x) and a(x) are
local operators at position x of E and the principal system,
respectively. For (f(x, 1))z and (f(x, )f(x, #))g (in the
interaction picture), where (- - -); denotes the expectation
value for the state p ; of E, we assume the same properties
as f(x, t) and f(x, 1)f(x', '), respectively, of the WCN. The
total Hamiltonian is H + H,, + Hg, where Hy is the
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Hamiltonian of E. Taking the initial state P, (0) as the
product state |UXW¥| ® p 5, we evaluate the reduced den-
sity operator p(t) = Trg[ P (2)]. We then obtain the
same result (4), where g(k) is now a typical value of the
spectral intensity derived from (f(x, 1)f(x’, ))z. There-
fore, NFSs are not fragile under any WPE, while AFSs
are fragile under some WPE [16].

Summary of fragility—We have shown that NFSs are
not fragile in any WCNs or WPEs. This should be con-
trasted with the results of most previous works, according
to which a state could be either fragile or robust depend-
ing on the form of H,, [1]. Note that our results concern
an approximate stability (i.e., nonfragility) against all
possible WCNs or WPEs and I:Iim’s, whereas most pre-
vious works studied the exact stability against particular
ones. We think that the former is more important in
macroscopic systems because many types of WCNs or
WPEs and H;,,’s would coexist in real systems, and the
exact stability against some of them could not exclude
fragility to another. Regarding AFSs, on the other hand,
our results show only that they are fragile in some WCN
or WPE. In other words, for any AFS it is always possible
to construct a noise (or an environment) and a weak local
interaction with it in such a way that the AFS becomes
fragile. These results do not guarantee the existence of the
relevant noise (or an environment) and the relevant inter-
action in real physical systems. Since there is no theory
that is general enough on WCNs or WPEs at present, we
cannot draw a definite conclusion on whether AFSs are
always fragile in real physical systems. It rather seems
that, as we discuss later, there may be some cases where
some AFSs are nonfragile, in contradiction to naive ex-
pectations. This motivates us to explore the following new
criterion of stability.

Stability against local measurements.—Suppose that
one performs an ideal (von Neumann) measurement of
a local observable a(x) at t = t, for a state p (pure or
mixed) of a macroscopic system and obtains a value a
with a finite probability P(a) # 0. Subsequently, one
measures another local observable l;(y) at a later time 1,
[17] and obtains a value b. Let P(b; a) be the probability
that b is obtained at 7, under the condition that a was
obtained at #,. On the other hand, one can measure l3(y) at
t = t, without performing the measurement of a(x) at z,,.
Let P(b) be the probability distribution of 4 in this case.
We say p is “‘stable against local measurements” if for
any € >0

|P(b;a) — P(b)| = & for sufficiently large |x — yl,
(6)

for any local operators a(x) and b(y) and their eigenvalues
a and b such that P(a) = e [18]. For the simplest case
t, — t,, we obtain the simple theorem: If p is stable
against local measurements, then it has the cluster prop-
erty, and that any state which has the cluster property is
stable against local measurements. It follows, e.g., that
any AFS is unstable against local measurements.
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To prove this theorem, we use the spectral decomposi-
tion; a(x) = Zaa’j’a(x) and similarly for b(y). Here,
P ,(x) denotes the projection operator corresponding to
an eigenvalue a of a(x). Since we are considering an
effective theory in a finite energy range, we assume that
ultraviolet divergences are absent: e.g., for any positive
integer m, (a(x)") = finite for any local operator a(x).
For t, —t,, both |P(b;a) — P(b)| =& and |P(a;b) —
P(a)| = & are satisfied if p is stable against local mea-
surements. Expressing the probabilities by the projection
operators, we obtain |Tr[pP,(x)P,(y)] — Tr[p P ,(x)] X
T p P, ()]l = emin[P(a), P(b)] for P(a), P(b) = &.
Multiplying this equation by |ab|, and summing over a
and b such that P(a), P(b) = €, we can show the cluster
property. To prove the inverse, we take a(x) = P,(x),
b(y) = P,(y)- Then, from (1), K6P,x)6P,()l =
e/P(a)[1 — P(a)]P(b)[1 — P(b)] for sufficiently large
|x — yl|. Dividing this by P(a) yields |P(b;a) — P(b)| =
J€ for P(a) = € [hence, also for P(a) = \/e]. We thus
obtain the stability against local measurements.

Applications.—The above results have many applica-
tions, including quantum computers with many qubits [5],
and nonequilibrium statistical physics. We here discuss
the mechanism of symmetry breaking (SB) in finite sys-
tems, which has been a long-standing question for the
following reasons. Consider a finite system that will ex-
hibit a SB if V goes to infinity. Let |¥), be a state that
approaches, as V — o0, a SB vacuum |¥),, of the infinite
system. We call |W),, for large V a pure-phase vacuum. It
has a macroscopic value (M) = O(V) of an additive order
parameter M. In a mean-field approximation, pure-phase
vacua have the lowest energy. However, it is always
possible (see the example below) to construct a pure
state(s) that does not break the symmetry, (M) = 0, and
has an equal or lower energy than pure-phase vacua
[7,15]. Although such states cannot be pure in infinite
systems, they can be pure in finite systems [2,7,8,15].
When [H, M] # 0, in particular, the exact lowest-energy
state is generally such a symmetric ground state [7,15]. To
lower the energy of a pure-phase vacuum, a SB field is
necessary. However, an appropriate SB field would not
always exist in laboratories. For example, the SB field for
antiferromagnets is a static staggered magnetic field,
which alters its direction at the period exactly twice the
lattice constant. It seems quite unlikely that such a field
would always exist in laboratories.

Our results suggest the following new mechanisms of
SB in finite systems. From the well-known theorem men-
tioned earlier, |¥),, has the cluster property. Since |¥),
approaches | W), it also has the cluster property for large
V. Hence, pure-phase vacua are not AFSs. On the other
hand, {((8M)2?) = O(V?) for the symmetric ground state
because it is composed primarily of a superposition of
pure-phase vacua with different values of (M) [7,15].
Namely, the symmetric ground state is an AFS and,
thus, is fragile in some WCN or WPE. Therefore, we
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expect that a pure-phase vacuum would be realized much
more easily than the symmetric ground state. This mecha-
nism may be called “environment-induced symmetry
breaking,” a special case of which was discussed for
interacting many-bosons [§8]. For general systems, how-
ever, there is one delicate point: g(ky) of the relevant
WCN or WPE might be O(1/V) in some of real systems
[19]. Then, Eq. (5) yields I' = O(V), and the symmetric
ground state becomes nonfragile. In such a case, we must
consider the stability against local measurements: Even
when the symmetric ground state is somehow realized at
some time, it is changed into another state when one
measures a relevant observable that is localized within
only a tiny part of the system. Such drastic changes
continue by repeating measurements of relevant observ-
ables, until the state becomes a pure-phase vacuum and
the symmetry is broken. This mechanism may be called
“measurement-induced symmetry breaking.” We conjec-
ture (and confirm in several examples) that the number of
local measurements necessary for reducing an AFS to an
NFS would be much less than N. For example, if we
regard the spins of the antiferromagnetic Ising model as
quantum spins, the pure-phase vacua are the Néel states,
W )=I[1T---1) and [¥_)= [l --- 1), for which the
staggered magnetization M, = Y ¢!™/¢5 (x) is the or-
der parameter; (W. |M,|¥.) = =V. On the other hand,
|®) = (|¥,) + |¥_))/+/2 is a symmetric ground state,
degenerating with |P.). It is an AFS because
(P|6M%| D) = V2. According to our results, |W.) are
stable, whereas |®) are unstable, against local measure-
ments. Therefore, if the initial state is | D), it is drastically
altered by a measurement of only a tiny part of the
system. For example, by measurement of &, of the first
spin, |®) reduces to either |V,) when o, = +1 or
|W_) when o, = —1. Namely, the symmetric ground
state turns into a pure-phase vacuum after the local
measurement, and the symmetry is then broken. After
that, the state alters only slightly by subsequent local
measurements because |¥.) are stable against local
measurements.
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