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Coloring Random Graphs
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We study the graph coloring problem over random graphs of finite average connectivity c. Given a
number q of available colors, we find that graphs with low connectivity admit almost always a proper
coloring, whereas graphs with high connectivity are uncolorable. Depending on q, we find the precise
value of the critical average connectivity cq. Moreover, we show that below cq there exists a clustering
phase c 2 �cd; cq� in which ground states spontaneously divide into an exponential number of clusters
and where the proliferation of metastable states is responsible for the onset of complexity in local search
algorithms.
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ent time intervals). magnet with q-state variables. For most lattices this
The graph coloring problem (COL) is a very basic and
famous problem in combinatorics [1] and in statistical
physics [2]. Given a graph, or a lattice, and given a
number q of available colors, the problem consists in
finding a coloring of vertices such that no two neighbor-
ing vertices have the same color. The minimally needed
number of colors is the chromatic number of the graph.

For planar graphs there exists a famous theorem [3]
showing that four colors are sufficient, and that a coloring
can be found by an efficient algorithm. On the contrary,
for general graphs the problem is computationally hard to
solve: already in 1972 it was shown that graph coloring is
NP-complete [4] which means, roughly speaking, that
the time required for determining the existence of a
proper coloring grows exponentially with the graph size.

In modern computer science, graph coloring is taken
as one of the most widely used benchmarks for the
evaluation of algorithm performance [5]. The interest
in coloring stems from the fact that many real-world
combinatorial optimization problems have component
subproblems which can be easily represented as coloring
problems. For instance, a classical application is the
scheduling of registers in the central processing unit of
computers. All variables manipulated by the program are
characterized by ranges of times during which their
values are left unchanged. Any two variables that change
during the same time interval cannot be stored in the
same register. One may represent the overall computation
by constructing a graph where each variable is associated
with a vertex and edges are placed between any two
vertices whose corresponding variables change during
the same time interval. A proper coloring with a mini-
mal number of colors of this graph provides an optimal
scheduling for registers: two variables with the same
color will not be connected by an edge and so can be
assigned to the same register (since they change in differ-
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The q-coloring problem of random graphs represents a
very active field of research in discrete mathematics
which constitutes the natural evolution of the percolation
theory initiated by Erdös and Rènyi in the 1950’s [6].
One point of contact between computer science and ran-
dom graph theory arises from the observation that, for
large random graphs, there exists a critical average con-
nectivity beyond which the graphs become uncolor-
able with probability tending to one as the graph size
goes to infinity. This transition will be called the
q-COL/UNCOL transition throughout this paper. The
precise value of the critical connectivity depends of
course on the number q of allowed colors and on the
ensemble of random graphs under consideration. Graphs
generated close to their critical connectivity are extraor-
dinarily hard to color, and therefore the study of critical
instances is at the same time a well posed mathematical
question as well as an algorithmic challenge for the
understanding of the onset of computational complexity
[7,8]. The notion of computational complexity refers to
worst-case instances and therefore results for a given
ensemble of problems might not be of direct relevance.
However, on the more practical side, algorithms which
are used to solve real-world problems display a huge vari-
ability of running times and a theory for their typical-
case behavior, on classes of nontrivial random instances,
constitutes the natural complement to the worst-case
analysis. Similarly to what happens for other famous
combinatorial problems, e.g., the satisfiability problem
of Boolean formulas, critical random instances of
q-coloring (or polynomial mappings to other NP-
complete problems) are a popular test bed for the per-
formance of search algorithms [5].

In physics q-coloring has a direct interpretation as a
spin-glass model. A proper coloring of a graph is a zero-
energy ground-state configuration of a Potts antiferro-
2002 The American Physical Society 268701-1



VOLUME 89, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 23 DECEMBER 2002
system is frustrated and displays many equilibrium and
out-of-equilibrium features of glasses (‘‘Potts glass’’).

Here we focus on the q-coloring problem (or Potts
antiferromagnet) over random graphs of finite average
connectivity, given by the GN;p ensemble (graphs com-
posed of N vertices with edge probability p for every pair
of vertices). In the relevant limit of finite connectivity we
have to take p � c=N which leads to random graphs with
a Poissonian connectivity distribution of mean c.

Two types of questions can be asked. One type is
algorithmic, i.e., finding an algorithm that decides
whether a given graph is colorable. The other type is
more theoretical and amounts to asking whether a typical
problem instance is colorable or not and what is the
typical structure of the solution space. Here we address
the latter question using the so-called cavity method [9].

Let us start with reviewing some known results on the
q-COL/UNCOL transition on random graphs. One of the
first important finite-connectivity results was obtained by
Luczak about one decade ago [10]. He proved that the
threshold asymptotically grows like cq � 2q lnq for large
numbers of colors, a result, which up to a prefactor co-
incides with the outcome of a replica calculation on
highly connected graphs [11] [p � O�1� for large N].
For fixed number q of colors, all vertices with less than q
neighbors, i.e., of a degree smaller q, can be colored for
sure. The hardest to color structure is thus given by the
maximal subgraph having a minimal degree at least q,
the so-called q-core. Pittel, Spencer, and Wormald [12]
showed that the emergence of a 2-core coincides with
random graph percolation at c � 1 [6] and is continuous.
For q � 3, however, the q-core arises discontinuously: For
q � 3 they found, e.g., that the core emerges at c ’ 3:35
and immediately contains about 27% of all vertices. The
existence of this core is, however, not sufficient for un-
colorability: The best lower bound for the 3-COL/
UNCOL transition is 4.03 [13]; numerical results predict
a threshold of about 4.7 [14]. The current best rigorous
upper bound is 4.99 [15]. Most recently, a replica-
symmetric analysis of the problem has been performed
[16]. The resulting threshold 5.1 exceeds, however, the
rigorous bound, and one has to go beyond replica sym-
metry. At the level of one-step replica-symmetry break-
ing (1RSB) we are able to calculate a threshold value
c3 ’ 4:69 which we believe to be exact [17]. We also
describe the solution space structure which undergoes a
clustering transition at cd ’ 4:42.

As stated above, the question of whether a given graph
is q-colorable is equivalent to the question of whether
there are zero-energy ground states of the antiferromag-
netic q-state Potts model defined on the same graph.
Denoting the set of all edges by E, the problem can thus
be described by the Hamiltonian

H �
X

�i;j�2E

��i; �j� (1)

with �
; 
� denoting the Kronecker symbol. The spins,
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�i; i � 1; . . . ; N, are allowed to take the q values
f1; . . . ; qg. This Hamiltonian counts the number of edges
being colored equally on both extremities; a proper color-
ing of the graph thus has energy zero. In this Letter we
apply the cavity method in a variant recently developed
for finite-connectivity graphs directly at zero temperature
[18–20]. This approach consists of a self-consistent iter-
ative scheme which is believed to be exact over locally
treelike graphs, similar to the ones we consider here. It
includes the possibility of dealing with the existence of
many pure states. One has to first evaluate the energy shift
of the system due to the addition of a new spin �0. Let us
assume for a moment that the new spin is only connected
to a single spin, say �1, in the preexisting graph. Before
adding the new site 0, the ground-state energy of the
system with fixed �1 can be expressed as

E0��1� � A
Xq
��1

h1���; �1�; (2)

where we have introduced the effective field ~hh1 �
�h11; . . . ; h

1
q�. Note that a �q 1�-dimensional field would

be sufficient since one of the q fields above can be ab-
sorbed in A. We, however, prefer to work with q field
components in order to keep evident the global color
symmetry. Connecting �0 to �1, and calculating the
minimal energy of the enlarged graph with fixed �0,
this reads

E��0� � min
�1

�
A

Xq
��1

h1���; �1� � ��0; �1�

�

� A!� ~hh1� 
Xq
��1

u�� ~hh1���; �0� (3)

with

!� ~hh� � min�h1; . . . ;hq�; (4)

u�� ~hh� �
�
1 if  h� <h1; . . . ;h�1;h��1; . . . ;hq
0 else:

The field ~uu� ~hh1� has at most one nonzero component,
which takes the value 1, i.e., ~uu� ~hh1� 2 f ~00;~ee1; . . . ; ~eeqg
with ~ee� denoting a unit vector in direction �.

If the new spin �0 is connected to d sites with fields
~hh1; . . . ; ~hhd, and if these spins were previously uncorre-
lated (which is the case inside one pure state, cf. the
discussion in [9]), the propagated fields can be linearly
superposed, ~hh0 �

Pd
i�1 ~uu� ~hh

i�. Note that the fields never
become positive, which reflects the antiferromagnetic
character of the model. Colors are suppressed by neigh-
bors carrying this color; they can be favored only by
suppressing all other colors. If there would be a single
state (replica symmetry), every link �i; j� would carry
two propagated fields, ~uui!j and ~uuj!i, which are deter-
mined self-consistently. In case of multiple states, these
fields fluctuate from state to state and have to be charac-
terized by a full distribution Qi!j� ~uu�, cf. [9,20]. Because
of the global color symmetry, each of these takes the form
268701-2
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FIG. 1. Top: Complexity ��c� vs average connectivity for
q � 3 and q � 4. Nonzero complexity appears discontinuously
at the dynamical threshold cd, and goes down continuously to
zero at the q-COL/UNCOL transition. The curves are calcu-
lated using the population-dynamical solution for ���� with
population size N � 106. Bottom: The solid line shows
the chromatic number of large random graphs vs their con-
nectivity c. The symbols give results of SMALLK for N � 103,
each averaged over 100 samples.
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Qi!j� ~uu� � �1 q�i!j�� ~uu� � �i!j

Xq
��1

� ~uu � ~ee�� (5)

and can thus be fully described by the probability
�i!j that any of the colors of vertex j is forbidden
by edge �i; j�. Denoting the histogram of all �i!j by
����, the self-consistency equation for the distribution
of the Qi!j� ~uu� can be reduced to a simple equation for
���� [21],

���� � ec
X1
d�0

cd

d!

Z 1=q

0
d�1 
 
 
 d�d���1� 
 
 
���d�

� �� fd��1; . . . ; �d��; (6)

where fd is simply given by

fd��1; . . . ; �d� �

Pq1
l�0 �1�l�q1

l �
Q

d
i�1�1 �l� 1��i�Pq1

l�0 �1�l� q
l�1�

Q
d
i�1�1 �l� 1��i�

:

(7)

This equation resembles a replica-symmetric self-
consistent equation and can be solved numerically using
a population dynamical algorithm: We start with an ini-
tial population �1; . . . ; �N of size N which can be easily
chosen to be as large as 106 to generate high-precision
data. This population is updated by iterating the following
steps until convergence: (i) Randomly draw a number d
from the Poisson distribution eccd=d!; (ii) randomly se-
lect d� 1 indices i0; i1; . . . ; id from f1; . . . ;N g; (iii) up-
date the population by replacing �i0 by fd��i1 ; . . . ; �id�.

One obvious solution of Eq. (7) is the paramagnetic
solution ���. For small average connectivities c it is even
the only one. The appearance of a nontrivial solution
coincides with a clustering transition of ground states
into an exponentially large number of extensively sepa-
rated clusters. In spin-glass theory, this transition is
called dynamical. Still, ���� will contain a nontrivial
peak in � � 0 due to small disconnected subgraphs,
dangling ends, etc. The weight t of this peak can be
computed self-consistently from

t � e�1t�c
Xq2

l�0

�1 t�lcl

l!
: (8)

This equation is quite interesting, since a nontrivial solu-
tion forms a necessary condition for Eq. (6) to have a
nontrivial solution. In fact [12], the fraction of edges
in the q-core is given by �1 tmin� with tmin being the
smallest positive solution of Eq. (8). Thus, we also find
that the existence of an extensive q-core is necessary for
a nontrivial ����, and forms a lower bound for the
q-COL/UNCOL transition.

Unlike in the case of finite-connectivity p-spin glasses
or, equivalently, random XOR-satisfiability problems
[22–24], the existence of a solution t < 1 is not sufficient
for a nontrivial ���� to exist. The latter appears suddenly
at the dynamical transition cd, which can be determined
to high precision using the population dynamical algo-
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rithm. This solution does not imply uncolorability, but the
set of solutions is separated into an exponentially large
number of clusters. The logarithm of their number, di-
vided by the graph size N, is called the complexity ��c�
and can be calculated from ����, cf. [20]

��c� � ec
X1
d�1

cd

d!

Z
d�1 
 
 
 d�d���1� 
 
 
���d�

� ln

 Xq1

l�0

�1�l
�

q
l� 1

�Yd
i�1

�1 �l� 1��i�

!


c
2

Z
d�1d�2���1����2� ln�1 q�1�2�: (9)

The full derivation will be given in [25]. At the dynami-
cal threshold, this complexity starts discontinuously with
a positive value, see Fig. 1, and decreases when c is
increased. The static RSB transition, and thus the
q-COL/UNCOL threshold cq, are given by the point of
vanishing complexity. At this point the number of clusters
becomes subexponential and disappears beyond cq.

In Table I, we present the results for q � 3; 4, and 5. For
the dynamical transition we show the corresponding
values of cd, of the entropy s�cd� � lnq� c

2 ln
q1
q , and

the complexity ��cd�. For the q-COL/UNCOL transition,
the critical connectivity cq and the solution entropy are
given. Like in random 3-satisfiability [26] and vertex
covering [27], this entropy is found to be finite at the
transition point.
268701-3



TABLE I. Thresholds and entropies.

q cd s�cd� ��cd� cq s�cq�

3 4.42 0.203 0.0223 4.69 0.148
4 8.27 0.197 0.0553 8.90 0.106
5 12.67 0.196 0.0794 13.69 0.082
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One can see that the complexity at the dynamical
threshold grows strongly with q, whereas the total entropy
decreases slowly. This means that the clustering phe-
nomenon becomes more and more pronounced, the
number of clusters increases, their internal entropy s�c� 
��c� becomes smaller. It also becomes more relevant for
small systems. At N � 100 and the dynamical threshold,
we would predict only around ten clusters for q � 3; for
q � 4 this number would already be close to 250, and
grow to about 2800 for five colors.

The dynamical transition is not only characterized by a
sudden clustering of ground states, at the same point an
exponential number of metastable states of positive en-
ergy appears [20]. Such states are expected to act as traps
for local search algorithms causing an exponential slow-
ing down of the search process. Well-known examples of
search processes that are overwhelmed by the presence of
excited states are simulated annealing or greedy algo-
rithms based on local information.

To test this prediction, we have applied several of
the best solvers for COL and SAT problems available in
the net [5,28]. The best results could be obtained using the
complete SMALLK program [28] which may need expo-
nential time to find a proper minimal coloring. Using a
cutoff time (we probed with 10 s, 1 min, and 2 min
without substantial changes for N � 103), the algorithm
can be restricted to subexponential times, i.e., only the
underlying polynomial-time heuristic is applied. The re-
sults in Fig. 1 were obtained in the following way: We first
tried to color a random graph (N � 103) with a small
number of colors (here q � 3). If, after the cutoff time,
SMALLK did not find a coloring, we stopped and retried
with larger q. For each connectivity we averaged over 100
samples. As can be clearly seen, the algorithm fails
with q colors slightly below the dynamical transition,
confirming our expectations. Only a perfect local heuris-
tic should reach this threshold.

We conclude by noticing that, in similarity to the
3-SAT problem [20], we expect the assumptions un-
derlying the cavity approach to hold for single instances
of COL. The equations for the order parameter on single
instances provide the full histogram of the N pro-
bability distributions of the effective fields, one for
each variable, which describe the fluctuations of the po-
larization of each Potts variable in the ground states. On
the physics side, this information allows one to develop
a single sample statistical mechanics analysis whereas
on the algorithmic side it allows one to develop new
algorithms [25].
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