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Macroion-Induced Compositional Instability of Binary Fluid Membranes
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Macroion adsorption on a mixed, fluid, lipid membrane containing oppositely charged lipids induces
local changes in lipid composition at the interaction zones, and gradients at their boundaries. Including
these effects in the free energy of the macroion-dressed membrane we derive its spinodal equation, and
show that nonideal lipid mixing can lead to (lipid-mediated) attraction between macroions and lateral
phase separation in the composite membrane. The critical nonideality for this transition is substantially
smaller than that of the bare lipid membrane, decreasing with macroion size and charge. That is, the
lipid membrane is destabilized by macroion adsorption.
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proposed by two groups [4,7]. Though using very differ- (approaching the volume fraction in dilute solution).
Biomembranes are two-dimensional (2D) fluid mix-
tures, composed of various lipid species and membrane-
associated proteins. Since the lipids are mobile, the
membrane can respond to interacting macromolecules
by locally changing its composition. Consider, for in-
stance, the adsorption of a highly charged cationic protein
onto a membrane containing a small fraction of anionic
lipids, initially randomly dispersed among nonionic lip-
ids. Upon adsorption, anionic lipids diffuse into the in-
teraction zone (thus displacing neutral lipids) so as to
minimize the electrostatic interaction free energy. For
two infinite, oppositely charged, planar surfaces this
minimum is reached when their charge densities are
equal [1,2], allowing maximal release of counterions
into the bulk solution. Similar principles govern macroion
adsorption, with variations depending on the macroions’
(finite) size, shape, and charge. More significantly, the
‘‘lipid demixing’’ induced by macroion adsorption is
partially inhibited by the concomitant entropy loss. The
actual composition profile of the annealed, macroion-
dressed, membrane is governed by the balance between
these opposing forces [3].

Local changes in lipid composition were reported for
both protein-membrane [4,5] and DNA- (cationic) mem-
brane [6] systems. Experiments also indicate that, upon
adsorption, charged proteins [4] or colloidal particles [7]
may aggregate into macroscopic domains, presumably
enriched with the macroions’ favorite lipids. Monte
Carlo simulations [8,9] of lipid-protein membranes, fea-
turing nonelectrostatic interactions, indicate that domain
formation can indeed take place. More generally, it was
shown theoretically that the critical demixing tempera-
ture of a binary membrane increases upon (nonelectro-
static) adsorption of colloidal particles which interact
preferentially with one lipid component [10].

Theoretical models for macroion-induced phase
separation of mixed lipid membranes were previously
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ent electrostatic adsorption models (yet both favoring
macroion-membrane charge matching), both models pre-
dict macroion-induced phase splitting even for ideal lipid
mixture. However, a major deficiency underlying these
treatments is the (tacit) assumption that the dressed mem-
brane is spatially uniform, thus neglecting local changes
in lipid composition and the role of macroion size. In our
theory, nonideal lipid mixing, local changes in mem-
brane composition and macroion size, and charge are
crucially important.

Thermodynamically, domain formation is a 2D
phase separation, indicating that the interaction between
macroions is effectively attractive. Since like-charged
macroions repel each other [at least, according to
Poisson-Boltzmann (PB) theory], this attraction must be
mediated by the ‘‘underlying’’ lipid substrate; involving
simultaneous splitting of both the macroion and lipid
layers. In this Letter we derive the dependence of the
membrane-mediated attraction on macroion size and
charge, and membrane composition. Also, while arguing
that nonideal lipid (chain) mixing is a necessary condi-
tion for phase separation in the dressed membrane, we
will show that the critical chain nonideality is substan-
tially lower than that of the bare lipid membrane.

Consider a binary membrane of area A, composed of
N molecules; Na � �N are charged lipids and Nn �
�1���N are nonionic.We assume that the charged lipids
carry a monovalent anionic headgroup, and the area per
molecule, al � A=N, is the same for both species. Thus �
is both the molar and area fraction of charged lipid,
measuring also the surface charge density, �e�=al; e
denoting the elementary charge. The membrane is em-
bedded in an aqueous electrolyte solution, characterized
by its Debye length, lD [2]. The solution also serves as a
reservoir of macroions with chemical potential 
p � ��
kBT ln�; � is the transfer free energy of a macroion from
membrane to solution, and � the macroions’ activity
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Hereafter all energies will be measured kBT’s; kB is
Boltzmann’s constant and T the temperature.

The 2D density of the macroion adlayer will be ex-
pressed in terms of � � M=Mmax; M and Mmax denoting,
respectively, the actual and maximal (close-packed in
2D) number of adsorbed macroions. Thus, ap � A=Mmax

is the minimal (projected) area per macroion, ap=al � �
serving as a convenient measure of macroion size (�� 10
for typical lipid-protein membranes). For concreteness, as
illustrated in Fig. 1, the macroions may be depicted as
disklike particles of effective area ap, each carrying a
net positive charge ezp, uniformly smeared over its
‘‘membrane-apposed’’ face.

The free energy of the dressed membrane, F �
Nf��; ��, can be expressed as a sum of three terms,

F � Nfel��; �� �Mmax�� ln�� �1� �� ln�1� ��	

� N�� ln�� �1��� ln�1��� � ���1���	: (1)

The first term is the electrostatic charging free energy of
the system, already minimized with respect to local
changes in lipid composition and macroion-membrane
distance, h. Also included in fel are the lateral electro-
static interactions between adsorbed macroions [11].
Excluded area interactions, and the translational entropy
of the macroion adlayer are accounted for by the 2D
lattice gas model in the second term. The last term in
Eq. (1) includes all nonelectrostatic (mainly lipid chain)
contributions, representing the free energy of a bare
neutral membrane. It is modeled here as an incompres-
sible binary mixture, with � measuring the extent of
nonideal lipid mixing in mean field approximation. This
model predicts a critical point at �c � 2; �c � 1=2 [12],
i.e., phase separation occurs when � > 2.

For � � 0 Eq. (1) is the free energy of the charged
bare membrane. Now � > 2 may not suffice for lipid
µ p
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FIG. 1 (color online). Adsorption of macroions (of chemical
potential 
P) from solution onto a binary fluid mem-
brane, inducing lipid ‘‘demixing,’’ i.e., different local compo-
sitions, �P and �L, in interacting and bare membrane regions,
respectively.
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phase separation, because electrostatic repulsions be-
tween the charged lipid headgroups counteract the
chains’ demixing tendency. Indeed, we shall show below
that �c of the charged membrane is nearly twice as large
as�c�neutral� at low salt concentrations, decreasing to the
neutral membrane value at the high salt limit (lD ! 0),
where Coulomb forces are fully screened. This result will
be obtained as a special (� � 0) case of the macroion-
dressed membrane whose spinodal equation is derived
below.

At equilibrium the chemical potentials of adsorbed and
solvated macroions are equal, @F=@M � �@F=@�� �
��=N� � 
p. Using Eq. (1) we find


p � �
@fel��; ��

@�
� ln

�
1� �

: (2)

The solution of Eq. (2), � � �eq��;
p�, is the
equilibrium coverage of macroions on a membrane of
composition �. If the dressed membrane separates into
coexisting phases characterized by �1; �1 and �2; �2,
then Eq. (2) must hold for both phases, relating �i �
�i;eq��i;
p�, (i � 1; 2) to �i. (Of course 
p � 
p;1 �

p;2.) The equilibrium values of �1; �2 can be de-
rived from the requirement for the equality of the anionic
(or the nonionic) lipid chemical potential in the two
phases (
a;i � @Fi=@Na;i) and the equality of the 2D
pressures �@Fi=@Ni [12]. Solving these coexistence
equations is equivalent to the ‘‘common tangent construc-
tion’’ for the thermodynamic potential ���;
p� �
f��; �eq��;
p�	 �
p �eq��;
p�=�; i.e., d�=d� and
���d�=d� should be equal in both phases. Rather
than solving the coexistence equations we shall suffice
here in deriving the spinodal curve, ����, defined by the
solution of �00��� � d2�=d�2 � 0. The spinodal marks
the border between the metastable (single phase) and
unstable (phase separated) regions and its minimum,
�c�� � �c�, is the critical point.

Using Eqs. (1) and (2) in �00��� � 0 one can derive the
general spinodal equation,

� �
1

2��1���
�

1

2

d
d�

�
@fel��; ��

@�

�
; (3)

where it should be noted that the d=d� operation must be
performed after substituting � � �eq��� from Eq. (2).

Below we apply Eq. (3) to two models of fel��;��.
First, mainly for comparison, we briefly discuss an ad-
sorption scheme whereby the macroions do not induce
any modulations in membrane charge. (For � � 0, this
model provides an adequate description of the bare mem-
brane.) The second model accounts explicitly for local,
macroion-induced, charge modulations. The two schemes
agree only in the high salt (weak adsorption) limit.

Macroion adsorption reduces the average membrane
charge density from � to ~�� � �� zp�=�. Treating
this ‘‘rescaled’’ charge as uniformly delocalized over
the membrane surface, the membrane free energy can be
calculated using the PB expression [2],
268102-2
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g��� � 2���1� q�=p� ln�p� q�	 (4)

for the charging energy (per molecule) of a uniform pla-
nar membrane of composition �. Here, q �

���������������
p2 � 1

p
,

p � p0�, p0 � 2%lBlD=al, and lB is the Bjerrum length.
Setting fel��; �� � g� ~��� in Eq. (3) we find

� �
1

2��1���
�

p0

~qq � 2p0�1=��z
2
p��1� ��

; (5)

with ~qq � �1� �p0
~���2	1=2 and � � �eq, as given by the

solution of Eq. (2). [In fact, Eq. (5) holds for any given �.]
The first term in Eq. (5) is the spinodal of a neutral

lipid membrane [fel � 0; � � 0 in Eq. (3)], yielding
�c � 2;�c � 1=2. For � � 0, Eq. (5) becomes the spino-
dal of the bare charged membrane: � � 1=2��1��� �
p0=

������������������������
1� �p0��2

p
; yielding �c ! 2� p0 ! 2;�c ! 1=2

in the high salt (p0 
 1) limit. �c increases rapidly
with p0 (e.g., �c � 3 for p0 � 2) saturating at �c ! 2����
3

p
� 3:7 [with �c ! �3�

���
3

p
�=2 � 0:63] in the low

salt limit (see also [13]). Under physiological salt con-
ditions p0 � 7.

For the dressed membrane Eq. (5) predicts a rapid
decrease of �c with zp, reflecting the enhanced adsorp-
tion of highly charged macroions and their efficient
screening of lipid charge. Still, �c cannot fall below the
neutral membrane value, �c � 2. Recall, however, that
this conclusion is based on the ‘‘charge smearing’’ ap-
proximation, ignoring the special ability of a fluid mem-
brane to adjust its local composition at the macroion
adsorption site.

The theory described in the remainder of this Letter
features the localized nature of macroion adsorption,
allows for local modulations in membrane composition,
and emphasizes the qualitatively different phase behavior
predicted by this approach, as compared to Eq. (5).

The area of the membrane ‘‘patch’’ affected by the
adsorption of a single macroion must be of the order of
ap, as illustrated in Fig. 1 (see also [3]). The exact lipid
composition profile within and around the interaction
patch depends generally on the macroion size, shape and
charge, as well as on � and �. We shall ignore these
details here and assume that the interaction zone is
bounded by a narrow stripe, of width comparable to one
molecular diameter (�

�����
al

p
). The mobile lipids in the

fluid membrane diffuse into and out of the ‘‘macroion
covered’’ (‘‘P’’) and bare membrane regions (‘‘L’’), ad-
justing the local compositions �P and �L in order to
minimize the dressed-membrane free energy, subject to
the conservation condition ��P � �1� ���L � �.

The electrostatic free energy of the dressed membrane
can be expressed as a (�-weighted) sum of contributions
from the P and L regions, and an interfacial, line energy,
term for the separating boundary

fel��; �� � �f?P��P;�� � �1� ��f?L��L;��

�
�

�
��1� ��: (6)
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Here f?P��P;�� � fP��P� � 4fmix��P;�� is the sum of
the electrostatic energy of P regions, fP��P� �
fel��P; � � 1�, and the lipid ‘‘demixing’’ term,

4 fmix��P;�� ��P ln
�P

�
� �1��P� ln

1��P

1��

� ���P�1��P� ���1���	: (7)

Similarly, f?L��L;�� � fL��L� � 4fmix��L;��, with
fL��L� � fel��L; � � 0� � g��L�. Note that upon sub-
stituting Eq. (6) into Eq. (1), the third (uniform lipid
phase) term in Eq. (1) is replaced by the weighted sum
of lipid free energies in the P and L regions.

The last term in Eq. (6) accounts for the line energy
associated with the gradients in lipid composition across
the boundaries between P and L regions. It is the product
of the boundary length [� ��1� ��] and the line energy
density (��). Actually, � is the line energy correspond-
ing to the perimeter length of one macroion (measured in
units of

�����
al

p
). Its general form for a circular interaction

zone (applicable to any composition profile) is � �
��=3�

R
2%r�@�=@r�2dr. For our narrow P� L boundary

where �P changing sharply to �L,

� � �1=2� �4��2; (8)

with 4� � �P ��L. The last equation could also be
derived using a 2D lattice model with nearest neighbor
interlipid interactions, !�i; j�; [i; j � anionic (a) or non-
ionic (n)]. Equation (8) is obtained by calculating the
number of a; a, n; n, and a; n contacts across the bound-
ary, using � � �c=2kBT��2!�n; a� �!�a; a� �!�n; n�	;
with c the lattice coordination number [12].

Lateral aggregation of the macroion-lipid ‘‘clusters’’
(as defined by the P regions) lowers the total P-L bound-
ary length, thus favored by large positive �. If strong
enough, this tendency can overcome the translational
entropy of the 2D ‘‘cluster gas,’’ resulting in phase sepa-
ration of the dressed membrane. Consistent with Eq. (8)
the attraction between clusters increases with their pe-
rimeter length, the degree of lipid nonideality, and the
composition gradient, 4�, on which we focus next.

For any given � and �, the segregated lipid populations
should adjust their compositions, �L � �� �4� and
�P � �� �1� �� 4�, so as to minimize fel��; �� in
Eq. (6); resulting in equal lipid chemical potentials in
the P and L regions: @fel��; ��=@4� � 0. Combining
Eqs. (6)–(8) with the general spinodal equation, Eq. (3),
we find (after some algebra) that the spinodal equation for
the localized adsorption model reads

� �
1

2�1=2 4� � �1� ��

d�
d�

; (9)

where, as before, d�=d� must be obtained from Eq. (2),
and 4� must satisfy @fel��; ��=@4� � 0.

Equation (9) is valid for any model of fL��L� and
fP��P�. For instance, in the ‘‘high salt’’ (p0 
 1, small
lD) limit one can use the Debye-Hückel expressions,
268102-3



VOLUME 89, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 23 DECEMBER 2002
fL��L� � g��L�p0!0 � p0�
2
L and fP��P� � p0j�

2
P �

�zp=��
2j. It can be shown that for weakly charged

macroions (zp=� < �) lipid demixing is negligible
(4� � �P ��L ! 0), and adsorption is weak (�eq 
 1
and d�=d� ! 0). Furthermore, the limit of �d�=d��=
4� in Eq. (9) is such that �! 1=2��1����p0,
which coincides with the high salt (p0 
 1) limit of
Eq. (5), the spinodal equation of the delocalized charge
model. The same result is obtained by using the Debye-
Hückel expression fel��;�� � �fP���� �1���fL��� �
p0��2 � �z2p=�2� in the general spinodal equation, Eq. (3).

The low salt (p0 � 1) limit is much more interesting,
and more relevant for biological systems where, typically,
p0 � 7. These conditions imply strong adsorption for
highly charged (say zp ’ 10, � ’ 10) macroions, because
the adsorption free energy is many kBT’s per macroion.
The adsorption is particularly favorable under charge
matching conditions, i.e., when � � zp=�. In general,
the average membrane charge density � is different
(say smaller) than zp=�. However, because the gain in
adsorption energy overwhelms the entropic demixing
penalty we may safely assume perfect charge matching,
�P � zp=�. Furthermore, because the adsorption is
highly favorable, macroions will continue to adsorb until
all charged lipids are ‘‘bound,’’ i.e., until � � �eq��� �
��=zp � �=�P and �L � 0. Thus, d�eq=d� � 1=�P
and 4� � �P � zp=�. Using these results in Eq. (9)
and minimizing � with respect to � we find the critical
parameters,

�c �
2

�2
P

����
�

p ; �c �
�P

2
: (10)

Recall that the critical nonideality of a bare membrane
in the low salt regime can be as high as �c � 3:7. Equa-
tion (10) reveals that a much smaller � may lead to phase
separation of the dressed membrane; e.g., for � � 10 and
zp � 10 we find �c � 2=3, smaller even than the neutral
membrane value �c � 2. In other words, macroion ad-
sorption onto a uniform and stable [�< �c�bare�] lipid
membrane can destabilize the system, leading to 2D
phase splitting of the dressed membrane. From Eq. (10)
we conclude that large (� � 1) and highly charged
(zp=� � �P � 1) macroions facilitate the phase separa-
tion, owing to their low �c. Interestingly, in the opposite
(formal) limit of ‘‘small, monovalent, and tightly bound’’
macroions (zp � 1, � � 1, �P � 1) Eq. (10) recovers the
neutral membrane values �c � 2; �c � 1=2.

An instructive interpretation of the localized adsorp-
tion scheme can be given as follows. Substituting �c from
Eq. (10) into Eq. (8) (with 4� � �P) we find �c � 2
for � at the critical point of the dressed membrane. Also,
at this point �c � �c=�P � 1=2. These results are valid
in the strong adsorption limit, where all charged lipids are
bound to macroions, forming a 2D ‘‘gas’’ of P clusters
(with �P � zp=�), embedded in a neutral membrane
(�L � 0); see Fig. 1. The free energy of this system is
268102-4
~FF=Mmax � � ln�� �1� �� ln�1� �� ����1� �� plus
linear terms in � that do not effect �c; �c. Now, it is
easily verified that (in the strong adsorption limit) sub-
stitution of fel from Eq. (6) into Eq. (1) yields a dressed-
membrane free energy, F, identical to ~FF. In other words,
the phase behavior of the composite membrane is gov-
erned by the (�; zp; �-dependent) interaction between
clusters. In contrast, the phase behavior predicted by the
delocalized adsorption scheme is dictated by the interac-
tion between lipids, partially screened by the adsorbed
macroions.

The theoretical formulation in this Letter assumed PB
theory for the electrostatic interactions, and random
(local) mixing of the lipid species. These mean field
approximations may affect our calculated critical pa-
rameters, but cannot detract from our conclusions regard-
ing the crucial roles of lipid mobility and localized
macroion adsorption in the membrane phase behavior.
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