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LiV2O4: Frustration Induced Heavy Fermion Metal
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We propose a two-stage spin-quenching scenario for the unusual heavy fermion state realized in the
mixed valent metal LiV2O4. In this theory, local valence fluctuations are responsible for the formation
of partially quenched, spin- 1

2 moments below room temperature. Frustration of the intersite spin
couplings then drives the system to produce the heavy Fermi liquid seen at low temperatures. The
anomalous resistivity and the sign change of the Hall constant can be understood naturally within this
model, which also predicts a unique symmetry for the heavy quasiparticle bands that may be observed
in de Haas–van Alphen experiments.
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to the pyrochlore structure. electrons in the Fermi sea. The locally symmetric spin
Magnetic frustration has attracted increasing attention
in recent years as an emerging tool to suppress anti-
ferromagnetism and generate new types of electronic
behavior. One exciting possibility is the development of
frustration induced heavy electron behavior in d-electron
systems where the Kondo temperature is generally too
small to overcome magnetic order without frustration.
The recognition of heavy fermion behavior in LiV2O4

[1] was an important first step in this direction. In
LiV2O4, the frustrated lattice remains undistorted to the
lowest temperatures measured [2]. The heavy electron
state which then develops is unusual in many respects:
it displays a monotonically increasing resistivity [3], a
pressure-driven metal-insulator transition [4], and field
independent heat capacity up to 30 T [4].

LiV2O4 forms a spinel structure. The magnetic vana-
dium atoms are homogeneously mixed valent forming a
lattice of undistorted corner-shared tetrahedra. The spin
at each site fluctuates between S � 1 (3d2) and S � 1

2
(3d1) with a formal valence of 3:5. Antiferromagnetic
couplings between these spins [5,6] imply that the lattice
is a highly frustrated metal. A strong on-site Hund’s
coupling between spins of order 1 eV [7] is manifested
in the photoemission [8] and the high temperature mag-
netic susceptibility [6]. At room temperature the magnetic
suceptibility and specific heat indicate the presence of
spin- 1

2 local moments at every site [3,9]. Below 4 K, the
moments quench into a heavy Fermi liquid [1].

There have been several attempts to explain this
physics. One class of model sees the frustration as sec-
ondary, the essential physics being due to mixed valence
[10], exhaustion [7], 1D chains [11], or a two-band
Hubbard model [12]. Another argues that frustration is
essential, leading to a tetrahedron rule [13], a frustrated
Kondo lattice [14], antiferromagnetically coupled spins
Hund’s coupled to conduction electrons [15], or quantum
criticality [16]. Here we present a simple two-band model
which we believe captures the essential physics: a two-
stage spin quenching that could not occur in the absence
of frustration; and show how our results can be extended
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The high temperature physics of LiV2O4 can be under-
stood as an S � 1 Mott insulator doped with holes on a
pyrochlore lattice. The strong Hund’s coupling leads us to
consider only spin-1 and spin- 1

2 sites coupled antiferro-
magnetically over the lattice via direct exchange [17],

H � �t
X
�i;j�

�X0
�i�X
0�j� � H:c:� �
X
�i;j�

Jsi � sj; (1)

where X0
 � j 1
2 ; 
ih1; 


0j � yb
 is a Hubbard operator
allowing the charged holes to move in the spin back-
ground via a hopping matrix element t, subject to the
constraint by
b
 � y � 2. J is an antiferromagentic
coupling between nearest neighbor spins. The local
physics of this model is that of a mixed valent impurity
undergoing charge fluctuations d2 � d1 � e� via hybrid-
ization with the surrounding bath of holes, as might be
formalized in a dynamical mean-field (DMFT) descrip-
tion of the above model. The effective impurity
Hamiltonian replacing the first term in H would then be

H1 �
X
k


�kc
y
k
ck
 �

X
k


t�X
0c
y
k
 � H:c:�: (2)

From strong coupling arguments [18], we know that a
Fermi sea of electrons forms below T1, quenching the
local moment character on each site to S � 1

2 . This pro-
vides a natural explanation for the behavior seen below
room temperature. On the lattice, this fluid can be visual-
ized as a smooth Fermi sea, from which the residual
spin- 1

2 moments protrude like spines on the hide of a
porcupine (Fig. 1). The original antiferromagnetic inter-
action between nearest neighbor sites now couples the
electron sea to the residual spin- 1

2 moments. The proper-
ties of this ‘‘porcupine’’ Fermi sea are the topic of the
remainder of this Letter. The question is what is the
nature of the intrasite screening process that removes
the free spins (spines) at low temperatures?

At low temperatures, J becomes an effective Kondo
coupling between the localized spins and the newly freed
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FIG. 1. (a) High temperature phase with large moments.
(b) Intermediate temperature phase with underscreened S �
1=2 moments embedded in a Fermi sea like the spines of a
porcupine (left: corresponding 1

4 -filled band interacting with a
localized level). (c) Low temperature phase in which the
Heisenberg interaction hybridizes these bands leaving a heavy
Fermi liquid of holes (left: corresponding band picture).
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state required to satisfy the strong Hund’s coupling means
that spatial overlap of the realized Wannier states is
forbidden as the heavy quasiparticle forms at low tem-
peratures. Thus, even after the complete breakdown of
any orbital picture, as the mixed valent spin quenching of
the upper level occurs in the totally symmetric channel
the second stage spin quenching can occur only in an
orthogonal channel. This is the analog of the atomic
Hund’s selection rule for itinerant states. Thus, the con-
ditions no overlap, no phase transition (equivalent sites),
and no time-reversal symmetry breaking arise, uniquely
specifying the second channel (Fig. 2). The unusual sym-
metry of the composite quasiparticles resulting from this
second spin quenching should be observable by de Haas–
van Alphen experiments.

We now treat the second stage at the mean-field level
keeping in mind that for LiV2O4, we really want to have a
half-filled localized d band interacting with a quarter-
filled delocalized d band. Estimates of J � �highT

cw �
400 K [6], Tc2 � 4–50 K, and t � 2 eV [17] (band
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FIG. 2. Symmetry selects a unique symmetry channel for the
second-stage Kondo effect in the (a) square lattice (b) Kagomé
lattice, and (c) pyrochlore lattice. The � signs refer to the
relative phases of the Wannier state at neighboring sites.
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theory) have been made, and we expect that Tc1 / t and
Tc2 / te�tb

2�=J as these are the two energy scales in the
problem. It is convenient to recast the Hubbard operators
into a slave boson language,

H �
X
hiji

��tXi0
X
j

0 � Jsi � sj� � JH

X
j

�
s2
j � 2 �

5

4
Xj00

�
;

(3)

where X0
 � byc
 is a Hubbard operator allowing the
holes to move in the upper e0g symmetry channel, s �
1
2 �c

y
����c� � dy����d�� is the total spin, and we need to

enforce the constraints nc � nb � 1, nd � 1 (a localized
spin- 1

2 level of a1g symmetry). The Hund’s coupling JH is
to be taken to infinity to enforce the constraint S2 � 2 at
doubly occupied sites.

We now demonstrate how a mean-field treatment of
Eq. (3) leads us to the effective Hamiltonian:

Hmf �
X
k


�Cy
k
 Dy

k
�hk

�
Ck


Dk


�
�2

X
�

������

J�

� �1�jbj2 � 1� � �2; (4)

where

hk �
�2tjbj2��1�

k � �1��
N �������

k � i�
��������

k � i ��� �2

N

 !
(5)

and Dy
k � �d1k . . . dNk�, Cy

k � �c1k . . . cNk� demark the
number of bands arising from the magnetic unit cell of
the lattice under consideration. �1 and �2 are Lagrange
multipliers fixing the occupancies of the electron and spin
liquid. ����

k is an N dimensional matrix representing the
Wannier functions, where N is the number of atoms per
unit cell and � � 1; . . . ;M specifies the number of or-
thogonal channels required to decouple the Heisenberg
interaction between one site and its M nearest neighbors.

The mean-field kinetic energy term of H is

Hkin � �
X
hiji

t�cy
b�i�byc
�j � �2tjbj2
X
k

Cy
k��1�

k Ck;

(6)

where the bosons take an expectation value, and the
Fourier transform happens to give ��1�

k , the totally sym-
metric Wannier state. Magnetic frustration enables us to
neglect the normally dominant interaction between the
residual spin- 1

2 moments; however, we must still consider
the Kondo coupling between localized and delocalized
bands in the expansion of the Jsi � sj term of Eq. (3):

HJ � J
X
hiji

sdi � s
c
j ! �

X
i;�

J�

2
�dyi� i���� 

y
i��di��; (7)

where the operators of the delocalized level have been
expanded in terms of orthogonal linear combinations
as  y

i� �
P
j !

���j� i�cyj and !�� is a form factor re-
flecting the phases at different nearest neighbor sites of i,
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reflecting the possible arrangements of cy on the lattice.
This becomes

HJ �
X
i;�

�
��i� 

y
i��di� � ���i�d

y
i� i��� � 2

���i��i�

J�

�
;

(8)

where we have performed a Hubbard-Stratonovich gauge
transformation on the four-fermion term before Fourier
transforming to obtain the off-diagonal terms in Eq. (5).

To treat the term of interest from a Hund’s coupling:

HH �
JH
4
�cy�d�d

y
�c�� !

4

JH
����� i ���dy�c� � icy�d��;

(9)

a Hubbard-Stratonovich gauge field has been introduced
to decouple the four-fermion term [19]. Before the
decoupling, HHjS � 1i � 0jS � 1i and HHjS � 0i �
JH
2 jS � 0i, so in the limit JH ! 1, the jS � 0i state
will be forbidden. To write Eq. (4) we have taken the limit
JH ! 1. Although this appears to be non-Hermitian, the
mean-field values of �, ��� (independent variables) will
also be imaginary so that physical quantities are real.
267201-3
The free energy can then be expressed as

F �� T
X
k;


Tr�ln�1 � e��h�� � 2
X
�

������

J�

� �1�jbj2 � 1� � �2; (10)

where hk is the Hamiltonian expressed as a matrix as
above. Since ��� and ��� both couple to Cy

�D�, changing one
affects the other, such that @2F

@ ���@�
$ ��� � @2F

@ ���@�
$ ��� � 0.

Integration over such fluctuations yields 1
J� �

1
J�

�F ����F ����=2F���, which guarantees the orthogonality of
the second channel. Channels with F ���� � 0 are effec-
tively removed from consideration. For example, on the
square lattice at 1

4 -filling of the upper level, in the absence
of the Hund’s term, �1 would have the highest Tc2, while
including the Hund’s term the calculated Tc2 for this
channel turns out to be negative. That is, no transition
would occur if channels with F ���� � 0 did not exist.

To solve for Tc2, it is helpful to isolate the interaction
contribution to the Green’s functions for the delocalized
level

G�1
c � �G0

c�
�1 � �; (11)

where � � x – – – – – – – – x � j��j
2�y�

k �!� �2�
�1��

k
describes the interactions with the localized level.
Writing the free energy contribution as Fj��j

2 �
�TTr ln�G�1

c � � �2j��j
2=J�� we find,
@2F

@��@ ����

							���i��0
�

2

J�
� T

X
n;k

Tr��y�
k G

0
cG

0
d�

�
k � �

X
k

XN
��1

f�Ek�� � f��2�

�2 � Ek�
)y
k��y�

k ��
k)k� �

2

J�
� 0; (12)
where Ek� is the energy of the �th band of the free
conduction electron problem and we have projected
�y
k�k onto the eigenvectors of Hkin; �; �1; �2 are set by

saddle-point evaluations to fix the filling.
On a square lattice, C4 symmetry means that the

possible overlap phases with the nearest four neighbors
are !� � 1

2 �1; i
�; i2�; i3��, � � f0; . . . ; 3g. Hopping occurs

in the first channel (� � 1) coinciding with the totally
symmetric Wannier state � � 0. Time-reversal symmetry
specifies the d-wave-like � � 2 as the second channel
(� � 2). The form factors arise as:

P
a !

�1�a�cyi�a �
1
2 �c

y
i�x̂x � cyi�ŷy � cyi�x̂x � cyi�ŷy�, which under Fourier trans-

form defines �1:  y
i1 �

P
k c

y
k e

�ikxi�cos�kx� � cos�ky�� �P
k c

y
k e

�ikxi��1
k . Similarly, ��2

k � c�ky� � c�kx� are found
��4;3
k � s�kx� � is�ky� completing the basis.
The effective Tc2

is found from

X
k


f�0� � f�Eqp�

Eqp
��2
k �2

k �
2

J
� 0; (13)

where Eqp � �2tjbj2��1�
k � �1 �� is determined self-

consistently subject to the conditions �2 � 0 andP
k nf��2tjbj2��1�

k � �1 ��� � 1�jbj2

2 .
On the pyrochlore lattice, four bands and six nearest
neighbors imply 24 independent symmetry channels. The
requirement that the states preserve the equivalence be-
tween sites reduces this number to 6, given by

!�
� �

1



6

p �1; �; �2;�1;��;��2�;

where �3 � �1. Of these, the only state orthogonal to the
original channel and time-reversal invariant is !� �
1


6

p �1; 1; 1;�1;�1;�1�, uniquely specifying the second
channel. This particular Wannier state has the property
that it changes sign between neighboring tetrahedra on
the lattice, as illustrated in Fig. 2. The four by four matrix
��1�
k now has the following parts (kij � ki � kj):

��1�
k �

0 c�ka� c�kb� c�kc�
c�ka� 0 c�kab� c�kac�
c�kb� c�kab� 0 c�kbc�
c�kc� c�kac� c�kbc� 0

0
BB@

1
CCA; (14)

while
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��2�
k � i

0 s�ka� s�kb� s�kc�
�s�ka� 0 s�kab� s�kac�
�s�kb� �s�kab� 0 s�kbc�
�s�kc� �s�kac� �s�kbc� 0

0
BB@

1
CCA: (15)

For this case, the free hopping Hamiltonian has been
treated previously by Reimers et al. [20] There are two flat
bands lying above two dispersing bands. Strictly speak-
ing, since we have 1

2 an electron per site involved and four
sites, this would actually give us an insulator. However,
since we have dropped the second degenerate band, a
more reasonable band structure would likely include
band crossings and incomplete fillings of the levels along
the lines of Singh et al. [17].

A large body of experimental work has been done, and
we now discuss a simple interpretation of some of this
work. We have four localized half-filled electron bands
interacting via a Kondo-like hybridization with four itin-
erant levels, each quarter-filled, which leaves us with a
holelike Fermi surface below Tc2. In this way, our model
is consistent with the sign change in the Hall constant
observed at 50 K in single crystal samples [3]. A simple
phenomenological fit consistent with the ideas we have
introduced for the resistivity yields

/ �

�
/i � AhT

2 T < 2 K;
/o � 4phT � ApT2 T > 100 K;

(16)

where /i � 21 �% cm (impurity scattering in the single
crystal), Ah � 2:0 �%cm K�2 (arises from the heavy
Fermi liquid) as given in Ref. [2], and /o �
0:27 m% cm (impurity scattering from the localized
spin 1

2 ), 4ph � 1:1 �%cm K�1 (phonon contribution
above �D), and Ap � 2:7 � 10�3 �%cm K�2 (arising
from the porcupine Fermi sea) have been extracted from
Urano et al.’s data [3]. Since Ah

Ap
� �

m�
h

m�
p
�2, this yields an

effective mass ratio of
m�
h

m�
p
� 27. An analogous fit of the

magnetic susceptibility, where the S � 1
2 (� � 66 K, g �

2:21) contribution has been first subtracted away from the
high temperature susceptibility measurements [3,6,9,21]
leaving a T linear contribution

T �

(
hT T < 2 K;
p�T � 350 K� � 2NA��g�2S�S�1�T

kB�T���
T > 400 K;

(17)
yields h

p
�

m�
h

m�
p
� 29. The observed low temperature

metal-insulator transition is hardly surprising under pres-
sure as broken symmetry Wannier states lie close in
energy to the chosen !2 for the second channel.
Invariance of the heat capacity to 30 T indicates that
the magnetic coupling J driving the spin quenching
is of much higher energy than the Kondo temperature
T � 50 K.

In conclusion, we have presented a physical picture
within which one can understand the physics of the frus-
trated heavy fermion LiV2O4. A simple t-J model is
capable of describing both the high temperature mixed
267201-4
valent phase and the low temperature coupling between a
Fermi sea and spin liquid. We have been able to uniquely
identify the symmetry of the low temperature quasipar-
ticles. Our picture gives a simple qualitative interpreta-
tion of the unusual resistivity, the change in sign of the
Hall resistance observed and should be used to predict the
result of de Haas–van Alphen experiments yet to be
performed. This work should serve as a starting point
for a DMFT or band structure calculation which might
describe the detailed energetics involved. In particular, it
would be interesting to follow the compression of the
lattice and see how the second channel symmetry depends
on nearest neighbor distance.
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