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Structure and Dynamics of Interfacial States
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We study nonequilibrium interfacial states in multilayer epitaxial growth and erosion on rectangular
symmetry crystal surfaces. We elucidate a recently observed transition between two kinds of rippled
states on (110) surfaces. We predict several novel interface states intervening, via consecutive tran-
sitions, between the two rippled states. We predict coarsening laws of the dynamics of the rippled and
the intervening states on (110) crystal surfaces.
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Here, J�NE� is the surface nonequilibrium current being none of the slope components vanishes: (�M1;�M2). In
Molecular-beam epitaxy growth and erosion of crystal
surfaces often manifest striking pyramidal surface
structures [1–6]. They are self-assembled nanostructures
induced by the classical Ehrlich-Schwoebel-Villain in-
stability [1]. These growing pyramids dominate the crys-
tal interface dynamics, as evidenced in numerous
experiments and simulations on high symmetry (100) and
(111) crystal surfaces [2–5]. Much less is known about
related phenomena on low symmetry surfaces. Thus, far
from equilibrium interfacial structures in the epitaxial
growth and erosion on rather typical rectangular sym-
metry (110) crystal surfaces have attracted attention only
recently [7]. Rather than pyramids, rippled (modulated)
structures have been observed on (110) surfaces of Fe [8]
and Ag [7]. In addition, an intriguing intermediary inter-
face state has been recently revealed in the ‘‘ripple rota-
tion’’ transition between two kinds of rippled states on
(110) surfaces [7]. In this Letter, we elucidate the experi-
mental phenomenology of the epitaxial growth and ero-
sion on (110) surfaces. Surprisingly, we find that several
novel interfacial states intervene between the rippled
states. For the first time, we predict the coarsening laws
of the dynamics of common rippled and other states on
these simplest low symmetry crystal surfaces.

We base our discussion on the general phenomenologi-
cal model for multilayer epitaxial growth in the absence
of (typically weak) adatom desorption and vacancy crea-
tion [1,6],
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It expresses the dynamics of the growing surface profile
h�x; t� in the frame comoving with the interface [x �
�x1; x2�], as the conservation law involving the surface
current J � �J1; J2� of the form

J � J�NE��M� � J�SD�: (2)
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a function of the local interface slope vector M �
�M1;M2�; M1 � @h=@x1, M2 � @h=@x2. J�SD� in Eq. (2)
signifies all other curvature currents that vanish on flat
interfaces (facets), e.g., the usual surface diffusion current
[6]. The (110) surface has rectangular symmetry and the
natural coordinate system (x1; x2) with the principal
axes along the sides of the surface rectangular unit cell.
This symmetry imposes a few ubiquitous properties of
J�NE��M� � �J�NE�1 �M1;M2�; J

�NE�
2 �M1;M2��. This current

vector must transform in the same way the slope vector
M � �M1;M2� transforms under symmetry transforma-
tions leaving the rectangle, i.e., the (110) surface invari-
ant. Thus, under the rectangle reflection �M1;M2� !
��M1;M2�; �J

�NE�
1 ; J�NE�2 � ! ��J�NE�1 ; J�NE�2 �. Likewise, un-

der the rectangle reflection �M1;M2� ! �M1;�M2�;
�J�NE�1 ; J�NE�2 � ! �J�NE�1 ;�J�NE�2 �. On the list of the (110)
surface symmetries there is no diagonal reflection
�M1;M2� ! �M2;M1�, i.e., J1�M1;M2� � J2�M2;M1�,
present on the square symmetry (100) surfaces [4,5].
Thus, on the rectangular symmetry surfaces, in general,

J�NE�1 �M1;M2� � J�NE�2 �M2;M1�; (3)

simply because the principal axes of the (110) surface are
not equivalent to each other. Commonly, stable zeros of
the nonequilibrium current, J�NE��M� � 0, correspond
to the preferred slopes M of the facets that develop across
the growing interface and organize into large structures,
e.g., the square pyramids on (100) surfaces [4,5]. By the
rectangular symmetry of (110), there are three possible
kinds of these preferred slope vectors: (i) singlet, for
which both slope components vanish, M1 � M2 � 0;
(ii) doublets of two equivalent (symmetry related) slope
vectors, for which one of the two components of the slope
vector vanishes; there are two nonequivalent types
of doublets: the pair (�M1; 0) and the pair (0;�M2);
(iii) quartet of four equivalent slope vectors, for which
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FIG. 1. The phase diagram of the interface model with
J�NE��M� in Eq. (5). It depends on only three dimensionless
parameters: a � �r1=
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, and c � �u12 � u21�=2
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p
. We

depict it in the (b; a) plane for a fixed c (here c � 3=4). Upper
panel: interface contour plots from our simulations. Lower
panel: the corresponding networks of facet edges and FT, i.e.,
diffraction patterns of various interface states: the rhomboidal
pyramid (RhP), two ordinary rippled R1 and R2, and two
rippled rectangular states R�rec�

1 and R�rec�
2 . Buckled rippled

R�buc� state is in the hatched area, between the line b � 1 and
the X point at b �

��������������
1� c2

p
, a � �

��������������
1� c2

p
� 1�=c, at the in-

tersection of the two lines a � a� � �1� b� c�=�1� b� c�
and a� � ��1� b� c�=�1� b� c�, marking state bounda-
ries. � is the rhomboidal angle of the RhP state pyramids:
tan��� �

����������������������������������������
�a� � a�=�a� a��

p
. The transition between R�rec�

1

and R�rec�
2 is along the horizontal line at a � acr �

	
����������������������
1� �c=3�2

p
� 1
=�c=3�. The FT of the R�rec� states are peak

quartets (� q1;�q2) which, at long times, degenerate into the
peak doublet (� q1; 0) for the R�rec�

1 , or into the peak doublet
(0;�q2) for the R�rec�

2 (as �=�! 0; see the text).
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the unstable epitaxial growth, the singlet at M � 0 is un-
stable, and stable facets may thus correspond to the dou-
blets or to the quartet. Thus, the stable doublet (�M1; 0)
gives rise to the structure of alternating facets, with the
slopes (�M1; 0), comprising the rippled state periodic
along the x1 direction, the R1 state; see Fig. 1 from the
simulations discussed later. Likewise, stable doublet
(0;�M2) gives rise to the rippled state R2 periodic along
the x2 direction; see Fig. 1. On the other side, the stable
quartet (�M1;�M2) may be expected to give rise to two-
dimensionally periodic interface structures of four-sided
pyramidlike objects, of the form

h�x1; x2� � M1jx1j �M2jx2j; (4)

within one period (unit cell) of the surface structure,
jx1j< �1=2 and jx2j< �2=2; see Fig. 1. By Eq. (4), the
contour lines (i.e., step terraces) of these pyramids are
rhombi (or rhomboids, if roof-top edges develop on the
pyramids; see Fig. 1). Thus, we call it the rhomboidal
pyramid (RhP) state. By its motif in Eq. (4), the Fourier
transform (FT) of this 2D periodic structure, ~hh�q1; q2�, is
easily shown to have dominant peaks placed along the
q1and q2 axes, at the wave vectors 	�2��2n� 1�=�1; 0

and 	0;�2��2n� 1�=�2
, with the integrated intensities
In � �2n� 1��4, n � 0; 1; 2; . . . . Only these peaks re-
main at long times when �1; �2 � the width of pyramid
edges and vertices [as tacitly assumed, for simplicity, in
Eq. (4)]. Structurally, the RhP state has the form of a
linear superposition of the two rippled states. Our RhP
peak pattern corresponds to the intermediary state dif-
fraction data of Ref. [7] revealing the four brightest
(n � 0) among our peaks, at the wave vectors [� 2�=
�1; 0] and [0;�2�=�2]. Such a four-lobe diffraction pat-
tern is manifest in the RhP FT magnitude plot in Fig. 1
from our simulations (all other peaks are smeared by the
positional disorder of the pyramid lattice). This and the
fact that our RhP state indeed intervenes between the two
rippled phases in our phase diagram in Fig. 1 (detailed
hereafter) qualify the RhP to be the novel interfact state
inferred from the experiments on Ag(110) [7]. Is the RhP
state the only one qualifying for this?

To answer this, we expose the phenomenology of the
epitaxial growth and erosion on (110) surfaces, by con-
sidering the dynamical model Eq. (1) with generic form
on the nonequilibrium current J�NE��M�. It can be ob-
tained as an expansion in powers of M respecting strin-
gent restrictions imposed by the rectangular symmetry.
By the inversion symmetry of (110), this expansion must
contain only odd powers of M. By respecting the rect-
angle reflection symmetries, we arrive at the general
expansion of the form

J�NE�1 � M1	r1 � u11M2
1 � u12M2

2 � 
 
 

;

J�NE�2 � M2	r2 � u21M
2
1 � u22M

2
2 � 
 
 

:

(5)

Because of the rectangular anisotropy Eq. (3), r1 � r2,
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u11 � u22, and u12 � u21, in general. The simplest, basic
growth model is naturally obtained by truncating out the
higher order terms in the ellipses in Eq. (5), by consider-
ing typical situations with small selected slopes. In this
limit, one is led to model J�SD� terms in Eq. (2) by the
anisotropic (rectangularly asymmetric) version of the
standard surface diffusion current [9]. Such a minimal
model exhibits a number of interfacial states generic
for (110) crystal surfaces, as documented in its (far-
from-equilibrium) phase diagram in Fig. 1. It is deduced
by linear stability analysis of the facets corresponding
to the zeros of J�NE��M� in Eq. (5), and further corrobo-
rated by numerical simulations of the model in Eqs. (1),
(2), and (5). In Fig. 1, we see the standard rippled
phases R1 and R2, emerging due to doublets at slopes
(�

��������������
r1=u11

p
; 0) and (0;�

��������������
r2=u22

p
), respectively. In Fig. 1,

we see also the rhomboidal pyramid RhP state, emerging
due to the quartet of four equivalent facets (�M1;�M2),
withM1 andM2 vanishing both square brackets in Eq. (5).
The quartet facets are stable only in the indicated RhP
region in Fig. 1. Therein, R1 and R2 doublets are both
unstable, leaving the RhP as the selected interface state
at long times; see Fig. 1. The ripple rotation phenomena
seen on Ag(110) here correspond to the sequence of two
consecutive bifurcation transitions: at one of them (along
the a� line in Fig. 1), RhP continuously transforms
into R1 (M2 ! 0;M1 ! �

��������������
r1=u11

p
), whereas at the other

bifurcation (along the a� line in Fig. 1), RhP continu-
ously transforms into R2 (M1 ! 0;M2 ! �

��������������
r2=u22

p
). In

between the two transitions, one has the stable RhP state,
which is an anisotropic version of one of the two familiar
square pyramid states on (100) surfaces (the phase I [4]),
with pyramid edges along principal axes of the surface,
as in Fig. 1. The RhP state, with a rectangular network of
edges in Fig. 1, coarsens much like the square pyramid
phase I (with the square network of edges), by the motion
and annihilations of the dislocations of the pyramids
edges network [4]; e.g., the interface width w� t�, with
� � 1=4, away from the transitions to other interface
states in Fig. 1. However, a substantially faster coarsen-
ing, with � � 0:32 we find in the RhP region close to the
R�buc�state (hatched region in Fig. 1) discussed later on.
Such an enhanced coarsening of the intermediary state
(faster than that of nearby rippled states, see below) has
been observed also in the experiments [7]. The coarsening
of the common rippled states R1 and R2 is also mediated
by moving dislocations destroying perfect periodicity of
these states (see the ripple edged plots in Fig. 1). They are
strikingly similar to the dislocations of 2D smectics A
[10]. In addition to the interface width w and the average
ripple period �, the rippled states are characterized by the
coherence length of ripples, �, corresponding to the sepa-
ration between dislocations along a ripple (see Fig. 1).
Both ��t� and ��t� are extracted from the anisotropic cor-
relation function hh�x1; x2; t�h�0; 0; t�i � w�t�  �x1=��t�;
x2=��t�� for the R1 phase, with  decaying in an oscil-
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latory fashion along x1 and monotonously along x2. Away
from the transitions to other states in Fig. 1, w� �� tn� ,
with n� � 0:28, and �� tn� , with n� � 0:56, suggesting
the scaling relation n� � 2n� [4].

In addition to passing through the RhP and the R�buc�

states, transitions between simple rippled states R1 to R2

may also go through the structures called rectangular
rippled states, R�rec�

1 and R�rec�
2 (in Fig. 1). Within the range

of these R�rec� states, the two nonequivalent doublets
(�M1; 0) and (0;�M2), giving rise to the facets of R1

and R2, are both locally stable. These facets comprise the
basic motif of the two R�rec� states, that is a rooflike
pyramid with a rectangular base �� �, yielding rectan-
gular contour lines in Fig. 1. The base sizes � and � are
along the two (nonequivalent) principal directions of the
(110) surface. We find them grown with different power
laws: �� tn� , n� � 0:25; �� tn� , n� � 0:50. As w�t� �
��t� � ��t� at long times, such rectangular pyramid
states are a special kind of rippled states with the period
��t�, as evidenced also by their diffraction patterns; see
Fig. 1. The scale ��t� is essentially the length of long roof-
top edges present on these rooflike pyramids; see Fig. 1.
These edges develop and grow either along the x2 direc-
tion in the R�rec�

1 , or along the x1 direction in the R�rec�
2

state. These roof-top edges do not develop only along the
transition line between R�rec�

1 and R�rec�
2 states in Fig. 1.

Along this transition line, the (110) surface develops a
state with a simple rhomboidal network of edges that is an
anisotropic version of the square pyramid phase II on
(100) surfaces [4] [with pyramid facets slope vectors
along the equivalent principal axes of the (110) surface,
and square networks of edges along the diagonals]. This
line is a far-from-equilibrium first-order-like transition at
which the two nonequivalent doublets of (110) surfaces,
giving rise to R1 and R2 states, can coexist. This Gibbs-
like coexistence requires the existence of the stationary
solution (@h=@t � 0) of Eq. (1) being the interface (edge)
between infinite R1 and R2 facets. This requirement yields
an analytic prediction for the position of the R�rec�

1 to R�rec�
2

transition line (see Fig. 1 caption) that is corroborated by
our simulations in Fig. 1. In this scenario, the ripple
‘‘rotation’’ transition occurs at a sharp, critical value of
a system control parameter (e.g., temperature). This is
unlike what is seen on Ag(110), with intervening states
such as the RhP and R�buc� as in our Fig. 1.

Our model exhibits one more state, the aforementioned
buckled rippled (R�buc�) state that borrows the corner re-
gion from the RhP state (hatched region in Fig. 1).
Therein, strikingly, all zeros of J�NE��M� are unstable (in
contrast to the rest of the phase diagram, with at least
some zeros stable). This can never happen for interfaces in
which the dynamics is governed by a free energy or by an
effective free energy [4] that actually exists for our model
in Eq. (5), only for the special case u12 � u21 [11].
However, as noted below Eq. (5), in general, u12 � u21
for (110) surfaces. Thus, the unusual region with all zeros
266104-3



FIG. 2. R�buc� state, with the contour plots of P�M1;M2� in the
M1 > 0, M2 > 0 domain. The quartet zero of J�NE��M� is set
here on the line M1 � M2. Notably, the preferred M is off the
quartet zero position.
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of J�NE��M� unstable is generic for (110) surfaces. Its very
existence escapes the common wisdom that stable facets
with vanishing J�NE��M� dominate the epitaxial growth
with slope selection (as no facet is stable here): In the
region of our R�buc� state in Fig. 1, after a long transient
involving ordering of pyramidal chains, the interface
eventually selects the shape of a rippled phase with
buckled ripples, structurally similar to the RhP state;
see Fig. 2. R�buc� has a motif similar to that of RhP,
Eq. (4), however, withM1 andM2 therein not correspond-
ing to a zero of J�NE��M�. Structurally, and according to
its position in the phase diagram in Fig. 1, the R�buc� state
may also qualify to be the state intervening between R1

and R2 states seen on the Ag(110) surface. Strikingly, in
contrast to the RhP and all other states here, the facets of
the R�buc� state do not assume slopes that vanish J�NE��M�.
Rather, these facets carry nonvanishing, persistent down-
hill surface currents Eq. (2), going horizontally in Fig. 2.
Their current flux is compensated by uphill currents in
the horizontal faint edges in Fig. 2. The distribution of
interface slope vectors P�M1;M2; t� approaches a stable
form peaked off the zeros of J�NE��M�; see Fig. 2. Thus, the
uncommon R�buc� state does exhibit the slope selection
although there are no stable zeros of J�NE��M�. We find
R�buc� to exhibit a fast coarsening: the interface width
w� t�, with � � 0:40 close to the center of the R�buc�

range in Fig. 1. This fast coarsening can be used to
distinguish the R�buc� from the RhP state in experiments.

In summary, the epitaxial growth and erosion of (110)
surfaces are shown to generically exhibit interesting in-
terfacial states intervening between simple rippled states.
Two of them, the rhomboidal pyramid state and the un-
usual buckled rippled state, structurally and according to
their position in the phase diagram, qualify to be the
266104-4
novel interface state recently seen on Ag(110). For the
intervening states and for the common rippled states, we
have predicted the interface coarsening laws yet to be
studied in experiments.
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