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New Dynamical Mean-Field Dynamo Theory and Closure Approach
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We develop a new nonlinear mean field dynamo theory that couples field growth to the time evolution
of the magnetic helicity and the turbulent electromotive force, E . We show that the difference between
kinetic and current helicities emerges naturally as the growth driver when the time derivative of E is
coupled into the theory. The solutions predict significant field growth in a kinematic phase and a
saturation rate/strength that is magnetic Reynolds number dependent/independent in agreement with
numerical simulations. The amplitude of early time oscillations provides a diagnostic for the closure.
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[e.g., [4,19,20] ] wrote down an equation for the time
evolution of 	, they derived quenching formulas for 	

last term contributes a term / hb�t� 
 r � b�t�idt . One
emerges with a choice rather than the difference between
Mean field dynamo (MFD) theory has been a useful
framework for modeling the in situ origin of large-scale
magnetic field growth in planets, stars, and galaxies
[1–4], and has also been invoked to explain the suste-
nance of fields in fusion devices [5,6]. However, whether
the backreaction of the magnetic field itself prematurely
quenches the MFD has been debated [7–24]. Recent
progress has emerged from incorporating magnetic hel-
icity evolution into the theory.

To make explicit the problem to be solved, we first
average the magnetic induction equation to obtain the
basic MFD equation [1,3]:

@tB � r� E �r� �V �B� � �r2B; (1)

where B is the mean (large-scale) magnetic field in
Alfvén speed units, � � ��c2�=�4�� is the magnetic dif-
fusivity in terms of the resistivity �, V is the mean
velocity which we set equal to 0, and E � hv� bi is the
turbulent electromotive force, a correlation between fluc-
tuating velocity v and magnetic field b in Alfvén units.
Textbook treatments [1,3] invoke E � 	B � 
r� B,
where 	 and 
 are pseudoscalar and scalar correlations
of turbulent quantities, respectively. In the kinematic
theory [1] 	 � ���c=3�hv 
 r � vi, where �c is a cor-
relation time, and (1) is solved with 	 and 
 as input
parameters.

But the kinematic theory is incomplete. In a study of
helical MHD turbulence, Ref. [18] derived approximate
evolution equations for the spectra of kinetic energy,
magnetic energy, kinetic helicity, and magnetic helicity
( � hA 
 r �Ai, where B � r�A). These calculations
suggested that 	 ’ ��c=3�hb 
 r � b� v 
 r � vi, the re-
sidual helicity, where h i indicates spatial or ensemble
average. This form has been employed in attempts to
understand nonlinear dynamo quenching by coupling
magnetic helicity conservation into the dynamo through
the hb 
 r � bi term [4,19–23]. Although these studies
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only for the steady state. Only after a coupled nonlinear
system of time-dependent large- and small-scale mag-
netic helicity equations were solved [15] was it apparent
that a dynamical quenching model based on residual
helicity reveals both a kinematic growth phase and an
asymptotic resistively limited phase as seen in numerical
experiments [12]. The dynamical approach has also been
applied to dynamos with shear [16].

But even in these dynamical approaches, the E was
assumed to be proportional to the residual helicity. Here
we show that the required residual helicity emerges not
from E , but from @tE , and that including the @tE equation
in addition to the MFD and total magnetic helicity equa-
tions is essential for a complete MFD theory. We first
derive @tE and then derive the triplet of equations to be
solved for the simple shear-free helical dynamo whose
solutions can be compared with existing numerical simu-
lations. We discuss these solutions, physical implications,
and the relation to previous work.

Deriving @tE .—A two-scale nonlinear quenching ap-
proach invoking the residual helicity in E [15] captures
the nonlinear dynamo saturation seen in simulations [12],
but the derivation of the appropriate E has been elusive. To
couple hb 
 r � bi of E to the magnetic helicity conser-
vation equation, the full small-scale field b must enter
this correlation not a low order approximation. The es-
sence of the puzzle [17] is that

E�t� � hv�t� � b�t�i �
Z t

0
hv�t� � @t0b�t0�idt0

� �
Z t

0
hb�t� � @t0v�t0�idt0; (2)

assuming that b�0� � 0 and that t� 0 so that hv�0� �
b�t�i � 0. The last two terms are both exact expressions
for E; however, neither leads naturally the residual hel-
icity entering 	: Upon using the induction equation for b,
the second term on the right leads to a term /

R
hv�t�r �

v�t�idt0. Using the Navier-Stokes equation for v, theR
0
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the two helicities. So how does the residual helicity
emerge?

Rather than impose the form of the E , we solve for it
dynamically using

@tE � h@tv� bi � hv� @tbi: (3)

To proceed, we need equations for @tb and @tv. Assuming
r 
 v � 0, we have

@tb �B 
 rv� v 
 rB �r� �v� b� � r� hv� bi

� �r2b; (4)

and

@tvq � Pqi�B 
 rbi � b 
 rBi � v 
 rvi � hv 
 rvii

� b 
 rbi � hb 
 rbii� � �r2vq � fq; (5)

where f is a divergence-free forcing function uncorrelated
with b, � is the viscosity, and Pqi � ��qi �r�2rqri� is
the projection operator that arises after taking the diver-
gence of the incompressible Navier-Stokes equation to
eliminate the total fluctuating pressure (magnetic � ther-
mal). Using Reynolds rules [25] to interchange brackets
with time and spatial derivatives, the fifth term of (4) and
the fourth and sixth terms in the parentheses of (5) do not
contribute when put into the averages, so we ignore them.

The contribution to @tE from the third term in (3) can
be derived by direct use of (4) in configuration space. We
assume isotropy of the resulting velocity and magnetic
field correlations for terms linear in B. We also retain the
triple correlations. The contribution to @tE from the sec-
ond term in (3) also contributes terms linear in B, and
triple correlations. Here the terms linear in B are best
derived in Fourier space. For this, we follow the tech-
nique in the appendix of Ref. [22], which invokes the
Fourier transform of the terms linear in B contributing
to h@tv� bi, supplemented by a linear expansion of the
projection operator in k1 � k2, where k1 is the character-
istic wave number of the bracketed or mean quantities,
and k2 is the characteristic wave number of the fluctuating
quantities b and v. Collecting all surviving terms, we
then have for (3)

@tE � 1
3�hb 
 r � bi � hv 
 r � vi�B � 1

3hv
2ir � B

� �hr2v� bi � �hv�r2bi � TV � TM; (6)

where TM � hv�r� �v� b�i and TVj � h�jqnPqi�b 

rbi � v 
 rvi�bni are the triple correlations. Note that
the third, fourth, sixth, and eighth terms in (6) come from
the hv� @tbi term of (3), and the second, fifth, and
seventh terms come from the h@tv� bi term of (3).

We are primarily interested in the component of E
parallel to B. For this we have

@tE jj � �h@tv� bi � hv� @tbi� 
B=jBj � hv� bi
� @t�B=jBj�: (7)

Substituting (6) into (7) gives
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@tE jj � ~		B2=jBj � ~

B 
 r �B=jBj � ~��E jj; (8)

where ~		 � �1=3��hb 
 r � bi � hv 
 r � vi�, ~

 �
�1=3�hv2i, and ~�� accounts for microphysical dissipation
terms, the last term of (7), and any additional contribution
arising from TM � TV � 0. Note that ~		 and ~

 appear
similar to the usual	 and
 dynamo coefficients in E , but
they are fundamentally different because they are coef-
ficients in @tE (and thus have different units) and do not
involve �c. Note also that if isotropy of like correlations
were strongly violated, ~		 and ~

 would be anisotropic
tensors in analogy to tensor generalizations of 	 and 

[26,27]. We have not considered that here.

Following [15], we define large- and small-scale mag-
netic helicities as HM

1 � hA 
Bivol and HM
2 � ha 
 bivol,

where h ivol indicates a global spatial average. Then
hb 
 r � bivol � k22H

M
2 and hB 
 r � Bivol � k21H

M
1 . We

define the small-scale kinetic helicity HV
2 � hv 
 r � vi.

We assume V � 0, and a force-free large-scale field for
which the @tHM

1 equation becomes degenerate [15] with
that of @tB

2. Then jBj � k1=21 jH1=2
1 j. We can thus rewrite

(3) as

@tE jj � k1=21 jHM
1 j1=2�k22H

M
2 �HV

2 �=3

� k3=21 �HM
1 =�jH

M
1 j

1=2�~  � ~��E jj: (9)

Dynamo equations.—We couple (9) to the equations
for small- and large-scale magnetic helicity evolution for
a dynamo in which the kinetic energy is externally forced
and V � 0. We interpret B, A, and E as the k1 (0< k1 <
k2) component of B;A and �v� b� of a closed system to
facilitate comparison with simulations of Ref. [12]. The
total magnetic helicity, HM � hA 
Bivol, then satisfies [1]
@thA 
 Bivol � �2hE 
 Bivol, where E � �@tA�r",
and " is the scalar potential. The large- and small-scale
integrated magnetic helicity equations are then
[12,15,28]

@thA 
Bivol � 2hE 
Bivol � 2�hB 
 r � Bivol; (10)

and

@tha 
 bivol � �2hE 
Bivol � 2�hb 
 r � bivol: (11)

When B is force-free, the two-scale approximation al-
lows us to write (10) and (11) as

@tH
M
1 � 2E jjk

1=2
1 jHM

1 j
1=2 � 2�k21H

M
1 ; (12)

and

@tH
M
2 � �2E jjk

1=2
1 jHM

1 j1=2 � 2�k22H
M
2 : (13)

We need to solve (12), (13), and (9) after converting them
into dimensionless form. We define the dimensionless
quantities h1 � HM

1 �k2=v
2
2� and h2 � HM

2 �k2=v
2
2�, RM �

v2=�k2, PrM � �=�, � � tv2k2, Q � �E jj=v
2
2,  � ~

=

v22, � � ~��=v2k2 � �1� PrM�=RM, and use HV
2 � �k2v

2
2.

For (12), (13), and (9), respectively, this gives

@�h1 � �2Qh1=21 �k1=k2�1=2 � 2h1�k1=k2�2=RM; (14)

@�h2 � 2Qh1=21 �k1=k2�1=2 � 2h2=RM; (15)
and
265007-2
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@�Q �� �k1=k2�
1=2h1=21 �1� h2�=3� �k1=k2�

3=2h1=21  

� �Q: (16)

Solutions.—Since HV
2 < 0, then HM

1 > 0 and HM
2 < 0

for a growing solution. The solutions of (14)–(16) for two
different RM are shown in Figs. 1 and 2 over different
time ranges for both � � 2=RM and � � 1; we use ~		 / ~


in Fig. 1, but the resulting solutions are only weakly
sensitive to the form of ~

 as shown in Fig. 2. In Figs. 1
and 2, we also plotted the empirical fit formula to nu-
merical simulations [12] [Eq. (54) of Ref. [12]] using our
dimensionless parameters, to demonstrate the good
agreement.

In Figs. 1 and 2, we also compare the triplet solution of
h1 with the doublet solution [15] that results from solving
(14) and (15) but with imposing E � 	B � 
r�B
such that Q � Qd � ��k1=k2�1=2h

1=2
1 �1� h2��c=3�

�k1=k2�3=2h
1=2
1  �c, where the correlation time �c is a

free parameter taken to be �1. Note that the present
triplet solution does not involve �c in the dynamo coef-
ficients ~		 and ~

. But a remarkable result emerges: Fig. 1
shows that the triplet solution matches the doublet solu-
tion at early times for � � 1, which corresponds to a
damping time ��1 � �c. This arises from a closure in
which the triple correlations TM and TV lead to a damping
with time constant ��c, and the damping suppresses the
oscillations. Figure 2 also shows that the � � 2=RM and
� � 1 cases are indistinguishable at late times. We can
also compare the kinematic regimes of the triplet and
FIG. 1. (a) Plot for k1 � 1, k2 � 5 with � � 2=RM. The top
and middle oscillating curves are for h1 with RM � 200 and
RM � 1000, and the bottom oscillating curve is Q for RM �
1000. The thin lines are the doublet solutions for h1 from
Ref. [15] which used an imposed E . Here  / �1� h2�.
(b) Same as (a) but with � � 1.
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doublet solutions. The rise to the first peak of h1 in
Fig. 1(a) is independent of RM, and there the two RM
triplet solutions overlap. This is the kinematic regime.
The end of the doublet kinematic regime occurs at h1 ’
1, as seen in Fig. 1. Again, the doublet and triplet match
when � � 1. In summary, the doublet solution emerges as
the limit of the triplet solution when the triple correla-
tions act as a damping term. This closure can be tested
with future simulations.

The maximum kinematic growth rate for h1 is a func-
tion of � because it occurs where Q is a minimum. If we
ignore resistive terms so that h1 � �h2, and assume that
� � 1 and  � 1=3, then Eq. (16) implies that the maxi-
mum growth rate occurs when h1 ’ 1� k1=k2. From
Fig. 1(a), the minimum of Q during the first oscillation
is �� 1=3 (found to be independent of k1=k2). Setting
@�h1 � nh1, the maximum kinematic growth rate from
(14) is then n� �2=3��k1=k2�

1=2�1� k1=k2�
�1=2 � 0:33,

for k2 � 5k1. However, when � � 1, the minimum of Q
from (16) occurs where Q � Qd. In this case, n�
�2=3��k1=k2��1� k1=k2� � 0:11 for k2 � 5k1. This dem-
onstrates that the kinematic growth rate for � � 1 is �3
times that for � � 1, and why the triplet kinematic
growth rate with � � 1 matches that of the doublet.
Both results are seen in Fig. 1.

Inspection of (14)–(16), reveals why there are oscilla-
tions for a positive seed h1 and � � 1 [and independent
of whether E�t � 0� � 0 or E�t � 0� � 0]. As long as
FIG. 2. (a) Same as Fig. 1(a) but for broader time range.
(b) Same as (a) but for � � 1. For this time range, the doublet
and triplet solutions are indistinguishable. The dotted curves
are fits to simulations [12]. The lines slightly below each of the
thick lines are for  / 1=�1� k1h1=k2� demonstrating the
weak dependence on ~

.
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�1< h2 < 0, Q grows more negative and h1 and h2 grow
with mutually opposite signs. As h2 passes through
�1 from above, @�Q changes sign immediately but h1
continues to grow positive, albeit more slowly, until Q
changes sign. Then, @�h1 changes sign and h1 decreases.
But @�h2 changes sign when @�h1 does, so when h2
eventually passes back through �1 from below, @�Q
reverses sign again, and eventually Q becomes negative
and h1 again grows. Large RM terms only weakly damp
the oscillations. This describes what happens in Fig. 1(a).
If instead, � � 1, once @�Q is depleted by the growth of
h2, the � term of (16) takes over and Q decays without
oscillating. Then h1 grows without oscillations [Fig. 1(b)].

Discussion.—Textbook kinematic MFD theories solve
only the MFD equation itself [1]. Recent nonlinear ap-
proaches incorporating magnetic helicity evolution dy-
namically [15,16] solve a doublet: the MFD equation (or
the @tHM

1 equation) and the total magnetic helicity evo-
lution equation (the @tHM

1 � @tHM
2 equation). The present

paper solves a triplet: the MFD equation, the total mag-
netic helicity evolution equation, and the @tE equation.
Only the present approach shows how the difference
between kinetic and current helicities (the residual hel-
icity) emerges as the MFD driver in a time-dependent
theory. The residual helicity in turn couples to the total
magnetic helicity evolution equation. The physical inter-
pretation of the solutions for a closed system is that, as the
large-scale helical field grows from MFD action, the
small-scale magnetic helicity grows of the opposite sign.
At early times, kinematic growth is unimpeded, and the
large-scale field energy grows to B2 * �k1=k2�v

2
2.

Eventually, the small-scale magnetic helicity backreacts
on the kinetic helicity, suppressing the growth rate to an
RM dependent value. Ultimately B2 ’ �k2=k1�v

2
2 at satu-

ration. This picture also arises in the imposed E doublet
approach [15]. The approaches agree in the asymptotic RM
dependent growth phase, matching simulations [12].
Oscillations can occur at early times only in the triplet
approach, and only when triple correlations are assumed
to be negligible (as in the first order smoothing approxi-
mation). The oscillations thus serve as a diagnostic for
the MHD closure scheme and can be tested with future
numerical experiments. For � � 1, the oscillations
disappear and the triplet and doublet approaches agree
exactly. This corresponds to a closure in which triple
correlations act as a damping term with damping
time ��c.
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