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A closed loop learning control concept is introduced for teaching lasers to manipulate quantum
systems for the purpose of optimally identifying Hamiltonian information. The closed loop optimal
identification algorithm operates by revealing the distribution of Hamiltonians consistent with the data.
The control laser is guided to perform additional experiments, based on minimizing the dispersion of
the distribution. Operation of such an apparatus is simulated for two model finite dimensional quantum

systems.
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Detailed knowledge of quantum Hamiltonians is es-
sential for a broad variety of applications. Various types of
laboratory data have served as sources to extract the
Hamiltonian information. Typically, experiments for this
purpose are chosen based on practical considerations, as
well as intuition regarding the significance of the data for
the ultimate sought-after Hamiltonian. The relationship
between the observations and the underlying Hamiltonian
is generally highly nonlinear. Choices of which experi-
ments to perform based on intuition alone may unwit-
tingly provide false guidance. This Letter introduces a
closed loop procedure for optimally identifying (OI)
Hamiltonian information, taking advantage of the free-
dom inherent with shaped control fields [1] to manipulate
the physical system.

Execution of the OI concept is particularly attractive in
situations that may exploit the emerging capabilities of
closed loop laser control of quantum dynamics phenom-
ena [2,3]. Successful control over the dynamics of a
quantum system generally relies on high finesse manipu-
lation of constructive and destructive quantum wave in-
terferences through suitably shaped laser fields [4].
Recognizing that the outcome of such experiments can
be sensitive to the often imprecisely known Hamiltonian
led to the suggestion of employing closed loop laboratory
techniques for directly teaching lasers how to achieve
quantum system control [2]. This procedure circumvents
the need for prior knowledge about the system Hamil-
tonian, and a growing number of successful closed loop
quantum control experiments have been reported [3,5—
10]. This Letter shows that similar closed loop laboratory
operations can be redirected for the purpose of extracting
information about the underlying Hamiltonian, rather
than meeting some particular observational target. As
the goal is to ultimately obtain high quality Hamilton-
ian structure (e.g., matrix elements, potentials, dipoles,
etc.), the effects of noise in the driving laser, as well as in
the observations, need to be considered. Amelio-
rating this situation is the ability of the OI algorithm to
guide the controlled collection of data, to reveal an opti-

263902-1 0031-9007/02/89(26)/263902(4)$20.00

PACS numbers: 42.55.—f

mal set of experiments that are robust to the noise and
optimal for inversion. The goal is to have the OI machine
deduce tailored controls and associated observations that
leave an absolute minimum of uncertainty about the true
underlying Hamiltonian.

Figure 1 presents an overall view of the basic Ol ma-
chine components. The inversion algorithm in the loop
extracts Hamiltonian information from the laboratory
observations, while the learning control algorithm sug-
gests new laser pulses guided by the goal of improving the
quality of the inversion. It is essential that the inversion
algorithm provide as much information as possible about
the full distribution of Hamiltonians consistent with the
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FIG. 1. The components of an apparatus operating under
closed loop to optimally identify system Hamiltonians: The
decision on which new control experiments to perform in the
loop is based on the goal of attaining the best quality
Hamiltonian information.
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data in order for the learning control algorithm to make
reliable choices for minimizing the breadth of the distri-
bution. As with closed loop learning control aimed at a
specific dynamical target [2,5-10], the learning control
algorithm in the OI loop can attractively function using
genetic algorithms (GA) [11-13]. Most importantly, the
requirement that the inversion algorithm produce a dis-
tribution of solutions (i.e., Hamiltonians) points towards
GA's as the procedure of choice in that component as well.

Considering the above issues, each excursion around
the loop will involve a family of K laser control fields
g,(1), k=1,2,..., K, where a particular field g,(7) is
associated with a concomitant laboratory observation
@}, In practice, the action of each field upon the quan-
tum system would be repeated a number of times due to
field and observation noise, yielding a distribution of
observations Pi°[®IP g, ] which may not be Gaussian.
In turn, the inversion of the kth data set would result in a
distribution g (H) of consistent Hamiltonians H. Here, H
might be described by a collection of matrix elements or
some other representation of the relevant Hamiltonian
components. The shape of the distribution g,(H) is dic-
tated by the laboratory data distribution and the various
dynamical intricacies driving the phenomena. The GA
guiding the inversion would best be performed with a
very large population (e.g., N, = 500) of Hamiltonians
H,, s =1,2,..., N, to generate the distribution g,(H).
The inversion would be carried out aiming at a match
between the laboratory and theoretical observational dis-
tributions, P{® and P, where the inversion would be
performed taking into account the reported errors in the
control field and observations. The cost function guiding
the GA for this purpose, JX = NLZ?/;I Jiny(Hy, DEP £)),
k=1,2,...,K could have any of a variety of standard
forms. A logical choice is to minimize the norm [|Pi* —
Pl over the set of consistent Hamiltonians {H,} to
finally yield the distribution of acceptable Hamiltonians
qi(H) associated with the kth control field. A suitable
error metric AH, may be obtained (e.g., the left and right
relative error variance of the relevant components of H)
from g, (H). Then, armed with the error metric AH;, > 0,
a cost function of the general form J, = JX + AH, +
llexll, K =1,2,..., K may be utilized to seek better con-
trol fields for another excursion around the loop. The norm
|le.|l serves to maintain control field simplicity, build in
any laboratory constraints on the field, or guide the ap-
paratus away from introducing laser pulse shapes that
have little significance for a successful inversion. Thus,
the choice of a new family of control fields {g,(¢)} for
another excursion around the loop would be made, bal-
ancing the inversion quality JX = (which is expected to be
readily achieved, such that Ji’iw =~ ()) against minimization
of the Hamiltonian uncertainty AH;, along with some
weighting on ||g;|| to keep the control field physically
reasonable. The new family of control fields {&,(7)} would
be deduced by the GA considering the performance of the
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prior family of controls in successfully minimizing J% .
As with the current closed loop quantum control experi-
ments, there is considerable flexibility in all of these
algorithmic aspects, including in the choice of operating
conditions for the two GAs guiding the inversion and
choice of controls [2,5-13]. Although the OI machine
performance [i.e., the production of an absolute minimum
dispersion in the distribution g;(H)] for at least one value
of k can depend on these algorithmic details, the overall
concept remains the same.

Closed loop operations for system identification have a
precedent in the engineering disciplines [14], but there
are special distinctions that arise in the present circum-
stances. Typically, in engineering, inversion is carried out
for the purpose of learning a portion of a model to
improve an ultimate system control gain. In the case of
quantum mechanics, a more general desire is to seek the
Hamiltonian for other ancillary purposes besides control.
Second, most common engineering applications involve
maintaining operational stability, which usually is ex-
pressed in terms of a locally linear system model. In
contrast, in quantum mechanics, most applications will
not be amenable to perturbation theory, thereby produc-
ing a nonlinear modeling and identification problem.
Last, the ability to perform massive numbers of control
laser experiments [3,4] opens up a special opportunity,
difficult to achieve in engineering, where it is often pro-
hibitive to thoroughly explore the analogous model dis-
tributions gy.

Two illustrations are carried out to demonstrate the OI
machine concepts in Fig. 1. Both illustrations involve a
system corresponding to HF [15] having a Hamiltonian
of the form H = H, — u - £(t), where H, is field-free
and w is the system dipole. This system just serves as a
model to test the OI algorithm with realistic Hamiltonian
matrix elements. In practice, the iterative inversion always
uses the relative error metric AH,, which is the ratio of
current estimated errors to the estimate for the associated
matrix elements in Hy. Thus, the normalization places the
small and large matrix elements on an equal footing and
provides a rather generic test of the OI algorithm. The
simulations are carried out with noise in the control fields
and in the observations, where the overall error distribu-
tion P[Pl ¢, ] is assumed to arise from a root mean
square combination of both error sources. The GA’s used
for inversion and control in both illustrations performed
in a standard fashion with mutation and crossover opera-
tions [11-13]. For demonstration of the OI concept, the
control fields were chosen to have the form g,(r) =
exp[—(t/0)*]> ¢ ak cos(wy + ¢Y), where the actual con-
trols are the amplitudes a’g and phases d)’{? associated with
the system resonance frequencies w,. The fields had a
width of o = 200 fs.

The first illustration consists of a ten-level Hamil-
tonian, with the data qﬁl*"?, i=1,2...,10 for the kth
control experiment being the state populations at the
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time T = 1.5 ps, after the control field g;(¢) evolved the
system from its ground state. The matrix H, was taken as
diagonal and known, with the goal of deducing the real
dipole matrix elements {w,,,}. The latter elements [15]
had the natural trend of having larger magnitude associ-
ated with smaller values of |n — m|, n # m. With w,,, = 0,
there are a total of 45 unknown matrix elements to be
determined by the closed loop OI operation. The inversion
quality of the 17 most significant elements w,, ,«1, ty, ,+2
are reported here, although comparable high quality
information was obtained for the entire matrix. The con-
trol fields guiding the machine operations in Fig. 1 were
capable of inducing up to third order transitions |n —
m| =< 3. Figure 2 shows the error distribution for the
extracted 17 matrix elements w,, ,+, iy +2, COnsidering
the laboratory error distributions P as uniform with a
standard deviation of 1%. Excellent quality dipole matrix
elements were extracted after a number of cycles around
the loop in Fig. 1. The mean error of the extracted ele-
ments was less than 0.1%, which is an order of magnitude
smaller than the laboratory data error. Importantly, this
high quality extracted information was obtained using a
single optimally deduced control field and its ten obser-
vations. The fact that a successful inversion may be per-
formed with only ten observations to determine 17
unknown matrix elements reflects the fact that the rela-
tion between the data and the sought-after matrix ele-
ments in the inversion is highly nonlinear. This nonlinear
feature is advantageous in aiding the OI procedure to find
a single optimal control experiment that produces a high
quality Hamiltonian consistent with the data. The OI
process required less than 500 experiments to deduce
the single optimal experiment. As a point of comparison,
a series of nonoptimal reference experiments were simu-
lated, involving 500 randomly chosen amplitudes and
phases for the control fields and, therefore, 5000 popula-
tion observations. Utilizing all of this collective data for

inversion produced the associated error distribution also
shown in Fig. 2. Despite the fact of having an overwhelm-
ing amount of data (i.e., 5000 data points to determine
17 unknown matrix elements), the quality of the non-
optimal inversion is far inferior to that obtained by OI
using a single identified field and its associated ten ob-
servations. To further illustrate the power of the OI ma-
chine concept, additional simulations were carried with
observation errors of 2% and 5%. Despite these quite
significant increases in laboratory error, the associated
dipole matrix element error distributions were almost
identical to the optimal one shown in Fig. 2, although
the optimal fields depended on the amount of noise in the
data. This behavior indicates that the OI machine sought
out the best control field to filter out the data noise under
each set of conditions.

As a second illustration, both Hj (i.e., the potential por-
tion of the field-free Hamiltonian) and u were treated as
unknowns in a corresponding real Hamiltonian matrix of
dimension 8. Again, considering that w,, = 0, there are a
total of 64 matrix elements as unknowns in H, and u.
These matrix elements are represented in the basis asso-
ciated with the observed populations. The data consisted
of the populations sampled at evenly spaced times out to
1 ps, and the laboratory error was taken as 2%. Figure 3
shows the effect of increasing amounts of data upon the
quality of the inversion of both H, and w. With a set of
eight observations at a single time of 1 ps, the average
error for w is already less than the laboratory error, while
that of H, is somewhat larger. The situation improves
when taking in data at a second time of 0.5 ps, and finally,
at four times spaced by 0.25 ps, for a total of 32 data
points. The quality of both the extracted H, and p matrix
elements is excellent, with average errors being at least
an order of magnitude smaller than the laboratory data
error. In contrast, Fig. 3 also shows that taking a total
of 200 data points using a set of random control field
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FIG. 2. The distribution of the errors in extracting the dipole matrix elements: A single optimal inversion experiment far
outperforms a standard inversion based on 500 random experiments.
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fields (especially during the early cycles of the loop) and
their associated data gave inferior inversion results.

Full synchronization of the loop operations in Fig. 1 is
essential, especially to take advantage of the high duty
cycle of the laser control experiments [1-4]. In this
regard, the most time consuming step in Fig. 1 is likely
the data inversion. A variety of techniques may be em-
ployed to accelerate this operation, including prior map-
ping of trial Hamiltonians upon the data [16] and
parallelizing the inversion computations. The overall OI
concept shows promise as a means for extracting high
quality Hamiltonian information, and the concept may be
executed with essentially no changes in the present laser
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FIG. 3. Quality of the extracted matrix elements for H, and u
as a function of the number of simulated recorded data points:
The optimal inversion algorithm with only 32 data points is
capable of identifying all 64 Hamiltonian matrix elements with
errors at least an order of magnitude smaller than the labora-
tory error of 2% (shown as an arrow on the ordinate). In
contrast, a standard nonoptimal inversion with 200 data points
produced an unacceptable inversion that magnified the labora-
tory errors.

phases and amplitudes produced a totally unacceptable
inversion, with extracted matrix element errors approxi-
mately an order of magnitude larger than the noise in the
observations.

Both of these examples indicate that high quality
Hamiltonian information may be determined from an
optimal set of experiments honed for that specific pur-
pose. The extracted Hamiltonian quality was far better
than the noise in the input data. This behavior arises from
the closed loop OI machine deducing an optimal control
field tailored to the inversion. The data associated with the
optimal field combined with the underlying exploratory
character of the controlled evolution leaves essentially no
freedom for the identified Hamiltonian, except for a
narrow distribution around the truth. In both illustrations,
operating in a ‘“‘standard” fashion with a very large set of
random control experiments produced distinctly inferior
inversion results, indicating that the processes involved in
achieving OI performance are quite subtle. This point was
also evident from examination of some of the fields put
aside by the closed loop control algorithm on the way to
determining the best final OI experiment; those discarded
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The authors acknowledge support from the National
Science Foundation and the U.S. Department of Defense.

(1]
(2]

(3]
(4]

(3]
(6]

(71
(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

(171

*Present address: California Institute of Technology,
Norman Bridge Laboratory of Physics, M.C. 12-33,
Pasadena, CA 91125.

TCorresponding author.

A. Weiner, Rev. Sci. Instrum. 71, 1929-1960 (2000).
R.S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500—
1503 (1992).

T. Brixner, N. H. Damrauer, and G. Gerber, Adv. At. Mol.
Opt. Phys. 46, 1 (2001).

H. Rabitz, R. de Vivie-Riedle, M. Motzkus,
K. Kompa, Science 288, 824-828 (2000).

A. Assion et al., Science 282, 919-922 (1998).
R.J. Levis, G. Menkir, and H. Rabitz, Science 292, 709—
713 (2001).

J. Kunde et al., Appl. Phys. Lett. 77, 924-926 (2000).
T. Weinacht, J. White, and P. Bucksbaum, J. Phys.
Chem. A 103, 10166-10168 (1999).

T. Hornung, R. Meier, and M. Motzkus, Chem. Phys.
Lett. 326, 445-453 (2000).

R. Bartels et al., Nature (London) 406, 164166 (2000).
D. E. Goldberg, in Genetic Algorithms in Search, Opti-
mization and Machine Learning (Addison-Wesley,
Reading, MA, 1989).

B.J. Pearson, J.L. White, T.C. Weinacht, and P H.
Buckbaum, Phys. Rev. A 63, 063412 (2001).

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, Phys.
Rev. A 64, 023420 (2001).

L. Ljung, System Identification. Theory for the User
(Prentice-Hall, Englewood Cliffs, NJ, 1999), 2nd ed.
A. Matsumoto and K. Iwamoto, J. Quant. Spectrosc.
Radiat. Transfer 55, 457 (1996).

J. M. Geremia and H. Rabitz, J. Chem. Phys. 115, 8899
8912 (2001).

J.M. Geremia and H. Rabitz, J. Chem. Phys. (to be
published).

and

263902-4



