VOLUME 89, NUMBER 26

PHYSICAL REVIEW LETTERS

23 DECEMBER 2002

Chirped Femtosecond Solitonlike Laser Pulse Form with Self-Frequency Shift
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Ultrashort laser pulse propagation in a generalized nonconservative system is considered. Slopes
appearing in the form of the third-order time derivative for narrow pulse widths, nonlinear dispersion,
and self-frequency shift arising from stimulated Raman scattering are taken into account. An exact
analytical solitonlike solution is presented for a femtosecond solitary laser pulse. The stability of the
latter has been shown numerically by applying perturbations in amplitude and chirp, as well as adding
white noise. The results indicate stability in a broad parameter range. In addition, we have also found
that the solution acts as an attractor when starting with a quite arbitrary Gaussian pulse as an initial

condition.
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During the past decade, the capacity of light-wave sys-
tems was dramatically improved by the impressive devel-
opments in laser, amplifier, and fiber technologies as well
as multiplexing techniques. The better understanding of
the underlying physics [1,2] will lead to the Tbyte/sec
operation regime in the next generation of ultrahigh
speed optical telecommunication systems. High bit rates
correspond to narrow pulse widths per channel. Thereby,
new physical effects will become important in the
Tbyte/sec regime. The new phenomena are similar to
those observed in the generation of ultrashort [femto-
second (fs) up to the attosecond (as)] laser pulses [3].

In the past, several authors, e.g., [1,2,4], have discussed
the new processes which are present in the ultrashort
pulse regime. In view of the many applications, the ques-
tion of whether stable ultrashort pulse solutions exist
becomes of utmost interest. That question may also be
posed in the form of whether fs pulses possessing a
solitary (solitonlike) structure exist. The soliton concept
has turned out to be very powerful in many fields of
modern science. At present, among the various soliton
realizations, the optical soliton in the picosecond (ps)
regime has the highest potential for practical applications.

In its original version, a soliton is a stable, localized,
nonlinear solution of an integrable, dispersive (Hamil-
tonian) system, such as the cubic nonlinear Schrodinger
(NLS) equation. However, during the past few years
stable, localized, solitary solutions have been also found
in driven and dissipative-dispersive systems, such as the
driven and damped NLS equation and the (quintic) com-
plex Ginzburg-Landau (CGL) equation. These pulse so-
lutions may be called solitary or solitonlike since they
share some properties with solitons, such as preserving
shape and size during propagation [5-10].

For intensive and short light pulses whose widths are
shorter than 100 fs, several new processes, such as
third-order dispersion (TOD), nonlinear dispersion, and
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self-frequency shift (SFS) arising from stimulated
Raman scattering, become important. For such cases,
the NLS equation has been extended to higher order
nonlinear Schrodinger (HNLS) equations [11]. Many
authors [12-21] have analyzed the HNLS equations
from different points of view (e.g., Painlevé analysis,
Hirota direct method, inverse scattering transform,
Darboux-Bécklund transform, etc.). They obtained soli-
tonlike solutions under the balance between group ve-
locity dispersion, self-phase modulation (SPM), TOD,
and self-steepening effects, respectively. Also, the effect
of fourth-order dispersion has been investigated [22]. It
should be noted that, in all of these investigations, the
important SFS has been ignored. Blow et al [23] have
employed the bandwidth-limited gain to suppress the SFS
and used an adiabatic perturbation theory as well as
numerical simulations to determine the laser pulse form.
Besides for the HNLS, also for the CGL equations several
generalizations have been discussed. A quintic nonlinear-
ity term has been added to investigate the corrections
caused by nonlinear amplification (absorption) and non-
linear refraction, resulting in new interesting solutions
[24]. Deissler and Brand [25] have investigated numeri-
cally the effect of a nonlinear gradient term and found
significant modifications.

In this Letter, we present an exact analytical solitonlike
solution for a fs laser pulse, including TOD, nonlinear
dispersion, and SFS. By employing numerical methods,
we prove the stability of the solitonlike solution under
perturbations of amplitude, white noise, and chirp. We
investigate the evolution of a Gaussian pulse as an initial
condition and report how it gradually approaches the
analytically predicted solution.

For an optical system, including bandwidth-limited
gain and higher order effects, a so-called distributed
model can be used when the period of the perturbation
is small compared to the amplifiers spacing. The resulting
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equation for the propagation of femtosecond (e.g., 100 fs)
pulses can be written in the form [4,9]
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where E(z, t) is the complex envelope of the electric
field, z is the normalized propagation distance, and ¢ is
the retarded time. The model parameters 6, o, €, and y
are real constants; A, u, and v can be complex. The
coefficient D = +1 (— 1) corresponds to anomalous (nor-
mal) dispersion. Furthermore, 6 > 0 (< 0) is the linear
excess gain (loss) at the carrier frequency wg, o and the
imaginary part A; of A result from the difference between
the pulse carrier frequency w, and the gain-center fre-
quency w, (and are proportional to w = w, — wy), €
describes the effect of spectral limitation due to gain
bandwidth-limited amplification and/or spectral filtering
(which are inversely proportional to gain and/or spectral
filtering bandwidth, respectively); y accounts for non-
linear gain and/or other absorption processes (in the
following, we shall call it effective nonlinear gain). The
real part A, of A represents the net TOD from material.
The real part w, of w is the nonlinear dispersion term;
it is responsible for self-steepening at the pulse edge.
The imaginary part u; of u describes the combined
effect of nonlinear gain and/or absorption processes; v
is the nonlinear gradient term which results from the
time-retarded induced Raman process. In fact, the imagi-
nary part v; of v is usually responsible for the soliton
SFS, and the real part », of v could be zero [1].

In this Letter, we present the analytic form of a stable
solitary pulse solution for the dissipative (6 <0 and
e > 0) and driven (y > 0) situation (u; = v, = 0). The
values for the various parameters will be discussed later.
Proceeding with the analysis of Eq. (1) similar to Ref. [9],
we separate E(z, 1) into the amplitude A(7) and nonlinear
phase according to E(z 1) = A(7)exp{i[Qr — Kz +
BInA(7)]}, where 7 is the retarded time defined by 7 =
t —pz , and B describes the possible chirp effects.
Substituting that ansatz into Eq. (1), one can separate
the complex envelope equation into two complex ordi-
nary differential equations:

0= n(y; — p)A,A> + nys{(n — D(n — 2)A3
+3(n— 1)AAA, + A%}
+ [nys + (2 — n)ys]AAY )

72”[(” - l)AA% + A2ATT] + 7nA5 + 70A3 =0, (3)

where n = 1 + i3, and the coefficients y; follow straight-
forwardly from the previous definitions.
Under the compatibility requirements 7y [ny,+

2—=n)ys]=(m+2)y3y, and yy(y;—p)=7vsy, (for
zero boundary conditions), we can solve either Eq. (2)
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or Eq. (3), and find the solution in the form A(7)=
Agsech(n7), with n(n+1)y,m° = v,A5, van*n* + v =0.
Returning to the electric field envelope, we get

E(z, 1) = Apfsech[n(t — p2)If' " expli(Qr — K2)]. (4)

By the present procedure we generate eight real algebraic
equations for the free parameters. We do not present them
in detail here, but discuss their solutions. In general, these
eight equations will determine eight parameters of the
problem. Six of them (A, 1, p, B, {1, and K) describe the
characteristics of the solitonlike pulses. The other two
will give compatibility conditions for Eq. (1), i.e., con-
ditions under which damping and driving balance for
stationary solutions.

Before proceeding, we remind the reader on a special
case which is known in literature. In the absence of
higher order terms, Eq. (1) simplifies to [1] E, — %E,, -
i|E?’E = 8E + ¢E,,. In that special case, our eight
algebraic equations reduce to six equations. By directly
solving them, one can easily obtain the solitonlike
solution which has been presented in Ref. [26],
E(z, 1) = Agysech(nr) exp{—i[Kz + iBlnsech(n?)]}, where
B=(—3*x9+32e?)/4e, n* =358/e(1 + B?), |A|*> =
—[3Bs+(2— B)/21n% K=—[(1— B)/2+2eB]n*
However, as pointed out in Ref. [26], that chirped soliton-
like solution exists only for 6 > 0 because of € > 0. It
means that the background is unstable, and the noise may
increase linearly with the distance.

For the general case, the relationship among the pa-
rameters is much more complicated. First, two equations
can be used to determine p and K directly. Second, from
two other equations one can rewrite the amplitude Ay and
the inverse pulse width 7 as

7601 = B, — BT = A, 12
ol = | 3, — B + 20, "

—o =260 + 31,02 712
77:[ o —2s :| ©6)

A(1—B%) +2M0.B

Third, the frequency shift {) can be obtained by a combi-
nation of two other equations, and, fourth, the chirp pa-
rameter B can be determined in a similar way. Instead
of presenting the general expression for B, we only
mention that the chirp parameter 8 depends on the
higher order terms. It implies that a chirp will generally
occur in the presence of higher order terms, except when
the parameters satisfy the condition 3(A;u, — A, u;) =
2(A,v; — A;v,). Thus, in principle, also a solitary wave
solution without chirp can exist in dispersive systems
such as the HNLS equation.

The remaining two equations will provide constraints
on the model parameters.

In summary, narrow, chirped, solitonlike pulse solu-
tions of Eq. (1) can be calculated systematically in the
form (4). The parameters follow from algebraic equations.
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FIG. 1. The inverse pulse width n in dependence on typical
parameters

We have investigated the dependence of the pulse widths
on the parameters TOD A,, effective nonlinear gain y,
chirp B, and frequency shift ). As shown in Fig. 1(a), the
smaller absolute TOD will lead to the narrower pulse
widths. This is consistent with the well-known experi-
mental results from ultrashort pulse lasers. Figure 1(b)
predicts that for the positive chirp narrower pulses will
occur than for the negative chirp. From Figs. 1(c) and
1(d), we can recognize that larger frequency shifts and
stronger effective nonlinear gains will produce narrower
pulses. These results are also consistent with the experi-
mental observations in some laser and fiber amplifier
systems (see, e.g., [27-29]).

A complete stability analysis of the solution (4) is com-
plex, both analytically and numerically, since the pa-
rameter space is at least six dimensional. By employing a
numerical split-step Fourier code to investigate the evo-
lution of different initial pulses, we have found stable
solitary pulses. For a typical example, we choose the fol-
lowing values: pulse duration 141 fs, pulse peak power
138.6 W, linear loss 1.3152 m~!, saturable absorption
0.63153 W 'km ™', nonlinear index 1.3 X 1072 (m/V)?,

amplitude |E|
o
(9]

(=]
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o
o
n
o

o

-10
time t

FIG. 2. Evolution of an initial pulse whose amplitude is 10%
smaller than that of the exact solution, i.e., for Ag = 0.73472.
The other parameters are the same as specified in the text.
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FIG. 3. Evolution of an initial pulse E(0,7) =
Ag[sech(nt)]expli(Qt + 0.46¢%)]. The parameters Ay, 1, and
Q) are specified in the text.

group velocity dispersion —6.3761 ps>km, third-order
dispersion 0.79535ps*km at wavelength 1.55 wm, small
signal gain 1.3147m™!, gain bandwidth 20.335 THz,
and saturable gain coefficient 0.19411 W~ 'km™!.
These values give the following dimensionless parame-
ters: 6 =—0.00151, 0=0.06293, £=0.50967, xy=
0.19158, A, =—0.03204, A;=0.00772, w,=—0.04137,
and v;=—0.0256. Then the solution (4) has the pa-
rameters Ay =0.81585, 1=0.65333, ) =-0.053115,
B=0.4182, p=—0.03935, and K= —0.35887 (without
loss of generality, the parameters u; and v, have been
set zero).

To demonstrate stability with respect to finite pertur-
bations, we performed three types of numerical experi-
ments. First, we perturbed the amplitude in the initial
distribution. Second, we looked for the evolution of pulse
forms with different initial chirps. Finally, we added
white noise. Figure 2 shows the evolution of an initial
pulse whose amplitude A, is 10% smaller than the theo-
retical prediction, i.e., 0.734 27. We clearly see that, after a
short period of adjustment, the theoretically predicted
pulse form evolves. Figure 3 depicts the evolution of a
solution under the perturbation of chirp. The initial pulse
is E(0, r) = Ag[sech(nt)]exp[i(Qt + 0.461%)], where A,
7, and ) have the values of the exact solution presented
above. Note that the form for the initial chirp is different

initial distribution

il

amplitude |E|
o
«

\
-10 0 10
time t

o

(=]
i)
(=}

FIG. 4. Evolution of the exact solution under the perturbation
of white noise whose maximal value is 0.2.
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FIG. 5. Evolution of an initial Gaussian pulse E(0,7) =
exp(—7).

from that in the exact solution. This difference ex-
plains the abrupt changes in the beginning. Neverthe-
less, finally the solution approaches the analytical one.
Figure 4 shows the evolution under the perturbation of
white noise whose maximal value is 0.2. From the evolu-
tion behaviors of the pulses, we can conclude that both,
the solitonlike solution and the background, are stable
under finite initial perturbations (see also the inlays
in Figs. 2—5, which show comparisons of pulses at typical
distances z with the initial as well as exact distributions).

Finally, we investigated the question of whether the
predicted pulse form is an attractor under quite general
conditions. Figure 5 shows the evolution of an initial
Gaussian pulse E(0, t) = exp(—#?). For a comparison with
the analytical solution, we have fitted the parameter val-
ues at z = 3000. The results are A; = 0.81051 = 0.016 17,
7n =0.64991 = 0.01857, B=0.40776*+0.01303, and
) = —0.05683 =£0.00417. From these evaluations we
conclude that the solitonlike solution (4) is an attractor
in the parameter region under consideration. A theoretical
model, making use of collective coordinates, is in
progress.

In conclusion, we have obtained analytically the soli-
tonlike solution for a generalized nonconservative system
which models ultrashort laser pulse propagation. The
stability of the solution has been investigated numeri-
cally. The results show that parameter regions exist in
which both, the solitonlike solution and the background,
are stable. In addition, we have also considered the evo-
Iution of an initial Gaussian pulse and found that it
gradually approaches the analytically predicted solution,
which acts as an attractor.
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