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To describe multiple interacting fragmentation continua, we develop a method in which the vibra-
tional channel functions obey outgoing wave Siegert boundary conditions. This paper demonstrates the
utility of the Siegert approach, which uses channel energy eigenvalues that possess a negative imaginary
part. The electron scattering energy in each such channel is rotated upward, giving it an equal and
opposite imaginary part. This permits a natural inclusion of vibrational continua without requiring
them to appear as explicit channels in the scattering matrix. Calculations illustrate the application of
this theory to photoionization, photodissociation, and dissociative recombination.
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In this Letter, we propose a general method for
describing coupling between electronic and dissociative
continua, based on a Siegert pseudostate basis repre-
sentation of the vibrational degree of freedom. The under-
lying rationale for this idea traces back to the recognition
by Kapur and Peierls [1] that the narrow resonances of a
scattering spectrum can be described in terms of a com-
plex energy eigenstate, with the imaginary part of the
energy defining a resonance width parameter. This pro-
posal was further developed by Siegert [2] in two im-
portant ways. First, Siegert showed that for any
Hamiltonian a set of eigenstates may be chosen to satisfy
pure incoming or outgoing wave boundary conditions
in the asymptotic limit. Second, and of importance to
our work, Siegert’s derivation allowed for overlap-
ping resonances of arbitrary width. Siegert eigenstates
formally correspond to S-matrix poles in the complex
plane. Sharply resonant features associated with bound
states can be identified with poles lying on the real axis,
while broad background scattering can be described by
closely spaced complex eigenstates that serve as a discre-
tized approximation to the true continuum.

Traditionally, the use of Siegert states has been com-
plicated by the nonlinearity of the associated eigenvalue
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problem. Because the wave number appears linearly in the
boundary condition but quadratically (as the energy) in
the eigenvalue, the eigenproblem is quadratic, and in the
past could only be solved iteratively. Tolstikhin et al. [3,4]
recently demonstrated how this difficulty may be circum-
vented using finite range Siegert pseudostates.

Initially, the true asymptotic boundary condition is
replaced by a finite range approximation,
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where R0 indicates the range of the potential. We expand
into a primitive basis set,
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Here N is the dimension of our basis, and we have
selected a nonorthogonal B-spline basis for the yj�R�.
Inserting this into the Schrödinger equation, premultiply-
ing by yj0 , and employing the boundary value (1), we find
a matrix equation for the coefficients cj,
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Note that we have used a Green’s theorem identity, and
that the Hamiltonian has been multiplied through by the
reduced mass �. Written more concisely in matrix nota-
tion, we have a system of the form

� ~HH � ikL� k2O� ~cc � 0; (4)

where Lj;j0 is the surface matrix yj�R0�yj0 �R0�, ~HHj;j0 is the
matrix 2�Hj;j0 � yj�R0�

d
dr yj0 �R0�, and O is the overlap

matrix for the spline basis set.
This equation is manifestly nonlinear, but the method

of Tolstikhin et al. allows it to be ‘‘linearized’’ by recast-
ing it as a new eigensystem in a basis of doubled dimen-
sion ([5,6] discuss related techniques for solving dif-
ferential equations where the eigenvalue appears in a
boundary condition). We define di � ikci, yielding a triv-
ial second equation ikO ~cc � O ~dd. Substituting this into the
original eigenequation now gives a linear equation in the
doubled basis space,
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This is an equation for the eigenvalue � � ik, giving 2N
solutions lying either on the �Re�� axis or in conjugate
pairs in the right half of the complex plane.

In their work, Tolstikhin et al. used completeness prop-
erties of the Siegert state set to construct a Green’s
function of the Hamiltonian, a scattered solution, and
the associated scattering matrix, for a variety of single
channel model problems. For systems with multiple chan-
nels, we instead appeal to the well-understood machinery
of multichannel quantum defect theory (MQDT).

For resonance series corresponding to high electroni-
cally excited intermediates (Rydberg states) of diatomic
molecules, the most natural description of the system is
one with quantum defect parameters defined in terms of a
fixed internuclear distance R and a well-defined projec-
tion of the orbital angular momentum � onto the axis of
symmetry. This is because the electron spends most of its
time far from the nuclear core and, when it does penetrate
into the core, it gains enough speed from falling through
the Coulomb potential that the nuclei are essentially
frozen on the time scale of its motion. The quantum defect
functions ���R� in this representation, the so-called
‘‘body frame,’’ may either be calculated from highly
accurate ab initio techniques, or extracted from a semi-
empirical fitting of experimental data [7]. In order to
connect them with the true asymptotic ionization chan-
nels defined in terms of Siegert pseudostates of the resid-
ual core, j � fv�; N�g, a frame transformation must be
performed [8,9], where N� is the ionic rotational momen-
tum, and v� is the vibrational quantum number of the
pseudostates. In our procedure, we directly evaluate the S
matrix by the frame transformation integral,
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The surface term in (6) also arises in the orthonormality
relation [3]. A similar transformation converts the body-
frame transition dipole elements D��R� into reduced di-
pole matrix elements in the same S-matrix representation,

DSj � �2J� 1�
X
�
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�J� h�jN�i

�
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0
�0�R�D��R�ei����R��j�R� dR: (7)

Here�0�R� is the initial vibrational wave function, and J0
and J are the total angular momenta of the initial and
final states of the system, respectively. Note that the
Siegert pseudostates are never conjugated in these expres-
sions, even when they formally belong to the dual (‘‘bra’’)
space. This means that the quantity labeled as ~DDSy below
is calculated by conjugating only ei����R� in the definition
above, and not the dipole matrix elements directly.
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At this stage of the calculation, no information about
the long-range behavior of the channels has yet been
included, and since the body-frame quantum defects are
nearly energy independent, the resulting S matrix is typi-
cally a smooth and fairly weak function of energy. The
method of channel elimination [10,11] systematically
eliminates flux in all electronic channels below the en-
ergy threshold for electron escape (the ‘‘closed-channel
subspace’’) to form a ‘‘physical’’ S matrix, Sphys, by tak-
ing the proper linear combination of short-range solutions
that ensures exponential decay at infinity. For a long-
range Coulomb potential, this procedure gives

Sphys � Soo � Soc�Scc � e�2i���1Sco: (8)

Here, � is a diagonal matrix of the usual Coulomb long-
range phase parameter ���j�, where �j is the (possibly
complex) effective quantum number in the jth channel, S
is the scattering matrix, and the subscripts indicate parti-
tions of the matrices into closed and open subspaces [11].

For a Siegert state basis, this physical scattering matrix
is in general not unitary, but rather subunitary, reflecting
the loss of flux at the boundary R0 via coupling to the
Siegert pseudocontinuum states. It may be used to cal-
culate partial cross sections by means of conventional
formulas, but with the departure from unitarity, 1�P
j jS

phys
j;j0 j

2, identified as the probability jSphys
d;j0 j

2 for scat-
tering into the dissociative continuum. This method also
provides all quantities necessary to find the partial photo-
ionization cross section into any open channel,�j; see Eq.
2.59 of [11] for further details. The contributions from all
open channels may then be summed to give the total cross
section for photoionization.

Alternatively, the total photoabsorption cross section
may be found directly from a ‘‘preconvolution’’ formula
first derived by Robicheaux to handle the energy smooth-
ing of densely spaced resonances [12,13],

�total�E� �
4�2 !

3�2J0 � 1�
Re ~DDSy 1� Se2i�

1� Se2i�
~DDS (9)

where Re signifies taking the real part of everything that
follows, and the y here conjugates only the operator, not
the entire matrix element. The diagonal matrix written
as e�2i� has a nontrivial definition in terms of the quan-
tum defect parameters, it may be approximated quite well
by taking �j � i1 for ‘‘closed’’ channels with �E�<
ReEj, and �j � ��j for ‘‘open’’ channels with �E� >
ReEj. Here E is the total energy of the system, Ej is the

threshold energy for channel j, and �j � 1=
																					
2�Ej � E�

q
on the branch where Im� > 0. The utility of this expres-
sion lies in recognizing that the value of the cross section
at a complex energy in the above formula is equivalent
to the cross section at a real energy, smoothed over a
channel-dependent width �j � 2 Im $j. In the Siegert
state formulation, the electron energy $j � E� Ej will
take on a complex value in any channel where the channel
eigenenergy Ej is complex, while E remains real.
263003-2



VOLUME 89, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 23 DECEMBER 2002
Given S and $j, either of the two cross-section formulas
above may be evaluated, with appropriate allowances for
the possibility of complex energy eigenvalues. Note that
the first procedure simply gives a sum over the flux into
specific ionization channels, while the second gives a
single value for the total photoabsorption cross section.
This means that the latter will contain information about
the solution wave function along the R � R0 boundary
not contained in any of the open ionization channels. In
general, the value of �total will be equal to or greater than
the sum over the individual �j, and any difference may be
attributed to the effect of coupling to high-lying Siegert
states in the continuum. Thus, the difference between
these two formulas yields the dissociative cross section.

In order to test the validity of this hypothesis, we have
defined a set of Siegert pseudostates for the H�

2 inter-
nuclear potential. The eigensolutions fall into three
classes, as shown in Fig. 1. Those lying on the positive
�Im k� axis are associated with negative eigenenergies
on the physical sheet of the E plane, the bound states of
the potential. These are the channel thresholds to which
the Rydberg autoionization series of the ionization spec-
trum converge, and so we include all of their states.
The solutions along the negative �Im k� axis lie on the
unphysical energy sheet, and we reject them as anti-
bound states arising from the doubling of the dimension
space. The remainder of the solutions fall above and below
the �ReE� axis, corresponding to conjugate solution
pairs of the eigenvalue parameter � � ik. We select
only those with negative ImEj, ensuring that they obey
outgoing wave boundary conditions. (This amounts to
selecting only those states that contribute to the retarded,
rather than the advanced, Green’s function. See [14]
for a related discussion.) For MQDT matrix elements,
one may also reject states lying high in the continuum,
since their Franck-Condon overlap with the bound states
is negligible.
FIG. 1. Distribution of H�
2 vibrational Siegert pseudostate

energies in the complex energy plane for angular momentum
N� � 1. Only the circled states are included as channels in the
scattering matrix.
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Tolstikhin et al. discuss the unusual completeness rela-
tion obeyed by the full set of Siegert pseudostates, with an
additional factor of 2. Our restricted subset of Siegert
pseudostates does not, of course, obey that doubled com-
pleteness relation. We have confirmed through numerical
tests, however, that our restricted subset behaves similar
to a complete set, to at least 10�12 accuracy, for represent-
ing either L2 functions confined within the boundary or
functions with purely outgoing wave character at the
boundary. For an impressive demonstration (in a some-
what different context) of the convergence properties of a
similarly truncated Siegert basis also used to describe
smooth continuum physics, see [15].

In the region of the ungerade H2 spectrum between
127 200 and 127 800 cm�1, there are several strongly
predissociated resonances, members of the np�; v� � 8
and np�; v� � 5 series. In each case, our calculated
spectrum correctly reproduces them in the total absorp-
tion cross section, but shows them as weak or absent in the
ionization. Comparisons of our results with other theo-
retical and experimental values [7,16] for selected reso-
nances appear in Table I. Note particularly that we are
able to correctly describe the strong rotational depen-
dence of the 4p�; v� � 5 branching ratio, a nontrivial
consequence of subtle channel interactions.

As a test of the method in an entirely different energy
regime, we considered the problem of dissociative photo-
ionization, a three-body breakup channel accessible only
at much higher energies. Experimental measures of the
ratio between pure ionization and dissociative ionization
have been performed since the 1970s by a number of
researchers [17–19], along with at least one early theo-
retical calculation [20]. Since our ionization spectrum is a
sum over individual channels, we can easily distinguish
between contributions from channels above and below the
dissociative threshold. Our results, plotted against those
of past experiment and theory, are presented in Fig. 2.
TABLE I. Photoionization and photodissociation yields for
select ungerade resonances in H2 for which the relative yields
have been experimentally observed [16].

State Source Energy % Ion. % Diss.

3p�, v� � 8, R�0� Observed 127 248.2 10(5) 95(5)
Theory [7] 127 246.9 1 99
Present 127 242.2 1 99

5p�, v� � 4, R�0� Observed 127599.4 90(10) 10(10)
Theory [7] 127 602.2 88 12
Present 127 606.8 76 24

4p�, v� � 5, R�0� Observed 127667.6 82(5) 18(5)
Theory [7] 127 665.4 93 7
Present 127 666.6 97 3

4p�, v� � 5, R�1� Observed 127599.4 30(10) 70(10)
Theory [7] 127 758.4 17 83
Present 127 759.5 29 71
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FIG. 2. Dissociative photoionization cross section, as a ratio
to the total photoionization cross section.
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Finally, we have performed a model calculation dem-
onstrating the utility of our method for treating dis-
sociative recombination, particularly in systems where
indirect channels (those involving scattering into inter-
mediate autodissociating Rydberg states) play an impor-
tant role. Figure 3 shows the dissociative recombination
spectrum of a simplified H2 model potential (neglecting
rotation and with R-independent quantum defects), com-
pared with the O’Malley approximation for smooth back-
ground scattering by direct processes [21]. Our spectrum
accurately reproduces this background, and also describes
complex interference effects from the series of resonances
converging to each Rydberg threshold.

Some aspects of the Siegert MQDT method remain
poorly understood, and would benefit from greater clari-
fication. For example, the utility of a subset of the Siegert
basis for MQDT depends on ability of that subset to
represent all energetically accessible regions of the con-
tinuum.While this requirement appears from our numeri-
cal tests to be reasonably easy to satisfy, we have not yet
rigorously derived it from the relevant completeness rela-
tions. Also, it is not presently clear how to extend the
energy-smoothed formula to include non-Coulombic
long-range electronic potentials.
FIG. 3. Dissociative recombination cross section for the
model potential, unconvolved (solid) and convolved with a
Lorentzian of width 0.1 eV (dashed line), compared to that
resulting from the O’Malley formula (dotted line).
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Other avenues of investigation could provide insight
concerning the applicability of our method to more com-
plex systems. Polyatomic molecules, for example, might
be handled either by reduction to hyperspherical coordi-
nates [22], or by a multidimensional generalization of the
Siegert state boundary conditions on an arbitrary hyper-
surface. Since our method yields a full solution to the
Schrödinger equation along the boundary at R0, it should
also be possible to project onto the continuum functions
of different dissociative channels, and explicitly resolve
partial dissociation cross sections [23]. Even in its current
form, however, we believe the Siegert MQDT method
offers a simple description of the flux escaping into dis-
sociative channels, by working within a channel basis
that obeys a physically motivated boundary condition.
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