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Exact Level Densities for the Harmonic Oscillator
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The number of levels of a many-fermion system confined by a harmonic-oscillator potential is
computed as a function of excitation energy. Because of its exact nature, the formalism accounts for
effects of shell structure on the level density. The method is easily extended to a variety of situations as
is illustrated with the inclusion of isospin and deformation effects as well as a calculation of the number
of spurious states.
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model. Alternatively, the Monte Carlo shell model (which
also avoids diagonalization) has been proposed recently

requires elementary algebraic manipulations only and is
as follows. Equation (2) can be rewritten as
A simple but commonly used estimate of the level
density of a nucleus is known since the work of Bethe
[1]. It assumes a gas of noninteracting fermions and,
through a statistical analysis, arrives at the following
expression for the level density (see also Chap. 2 of [2]):

��A;E� �
1������
48
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E
exp

����������������������������
2�2g��F�E=3

q
; (1)

where A is the particle number and E is the excitation
energy. The A dependence in this formula arises through
the density g��F� of single-particle levels at the Fermi-
surface energy �F. The Fermi-gas estimate (1) cannot be
reliably applied at low excitation energy E where a low
level density precludes a statistical analysis. At high
excitation energy E, its derivation relies on the neglect
of higher-order derivatives of the single-particle level
density g��� and might be incorrect if this condition is
not fulfilled [2]. Its most important limitation, however,
is that it assumes independent particles.

After Bethe’s work, it was soon realized that his ap-
proach is an approximation to exact state-counting for-
mulas [3]. With the advent of the nuclear shell model,
effects of shell structure on nuclear densities were inves-
tigated in this way [4], and combinatorial counting tech-
niques were used to evaluate the level density of Fermi
systems consisting of equally spaced single-particle lev-
els [5]. This approach continues to inspire research in this
field (see, e.g., [6,7]). Nevertheless, formulas based on the
statistical estimate (1) (and its extensions) continue to be
widely used [8] in applications where nuclear level den-
sities are needed, e.g., in astrophysical studies [9]. A cal-
culation of level densities that goes beyond the Fermi-gas
model and takes account of the residual interactions
between particles is much more involved. Because of
the rapidly increasing size of the model space with
mass, a direct diagonalization of the Hamiltonian matrix
quickly becomes impossible. One way to get at the level
density is via spectral averaging methods which have
been applied to the spherical [10] and deformed [11] shell
0031-9007=02=89(26)=262502(4)$20.00
[12] to obtain nuclear level density distributions.
Applications to nuclei in the 50 � A � 70 mass region
were considered for a pf [13] or pf� g9=2 [14] single-
particle space with a multipole interaction.

The approach presented in this Letter can be viewed as
a counting method. A recurrence relation is established
which allows the calculation of the exact number of
harmonic-oscillator configurations with a given energy.
The algorithm for computing such numbers can be estab-
lished by relating them to those of a harmonic oscillator
in a lower dimension [15].

Consider A identical fermions with spin s in an iso-
tropic three-dimensional harmonic oscillator (HO). A
single-particle state is labeled by three quantum numbers
n1, n2, and n3 which denote the numbers of oscillator
quanta in the 1-, 2-, and 3-directions. Since the particles
carry spin s, an additional quantum number  is needed
which labels the spin degeneracy. A many-body Slater
determinant is specified by the occupation numbers
kn1n2n3 with indices that run over all possible values
(i.e., ni � 0; 1; . . . and 2s� 1 distinct values for ). For
fermions, a single-particle level can be either occupied
(kn1n2n3 � 1) or empty (kn1n2n3 � 0). The occupation num-
bers kn1n2n3 of an A-particle state with total energy Et must
satisfy the following equations:

X1

n1n2n3�0

X


kn1n2n3 � A;

X1

n1n2n3�0

X


�n1 � n2 � n3�k

n1n2n3 �N ;

(2)

where N is the total number of oscillator quanta �h! of
the state, related with the total energy Et through Et �
�N � 3

2� �h!. The enumeration of all solutions kn1n2n3
determines the number of distinct A-particle states which
shall be denoted as c3�A;N � with the index 3 referring to
the dimensionality of the HO.

The derivation of the algorithm to calculate c3�A;N �
 2002 The American Physical Society 262502-1
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FIG. 1. Top: The level density ��A;E� for A � 70 s � 1
2 par-

ticles. The full curve is the level density computed from Bethe’s
one-component Fermi-gas formula, and the dots represent
c3�A;N �. Bottom: The number of spurious states as a fraction
of the total number of states.
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X1

n1n2�0

X1

n3�1

X


kn1n2n3 � A� A0;

X1

n1n2�0

X1

n3�1

X


�n1 � n2 � n3�k

n1n2n3 �N �N 0;

(3)

where A0 and N 0 are defined through
X1

n1n2�0

X


kn1n20 � A0;

X1

n1n2�0

X


�n1 � n2�k

n1n20

�N 0:

(4)

A new set of unknowns k0n1n2n3 
 kn1n2n3�1 is now intro-
duced. The sums in (3) have again n3 running from 0 to 1
in terms of the new unknowns, and by subtraction of the
first from the second equation, one finds

X1

n1n2n3�0

X


k0n1n2n3 � A� A0;

X1

n1n2n3�0

X


�n1 � n2 � n3�k0n1n2n3 �N �N 0 � A� A0:

(5)

Equation (5) has a structure identical to the original one
but with smaller numbers of particles and quanta; Eq. (4)
is also of a similar type but for a two-dimensional HO. In
fact, the entire derivation can be carried out for a
d-dimensional HO and yields the following recurrence
relation:

cd�A;N � �
X
A0N 0

cd�1�A0;N 0�

� cd�A� A0;N �N 0 � A� A0�: (6)

One needs, in addition, some boundary values for
cd�A;N �. They are

cd�A � 0;N � � �N 0;

cd�A;N � � 0; if N <MA
d ;

(7)

where MA
d denotes the minimum number of quanta for A

particles in a d-dimensional HO. Note that the depen-
dence on the spin degeneracy is introduced in the bound-
ary values only, in particular, via the minimum number
of quanta MA

d . An analysis of the one-dimensional case
shows that (6) remains valid, provided one takes

c0�A;N � �
�2s� 1�!

A!�2s� 1� A�!
�N 0: (8)

The algorithm (6) is easily implemented numerically
through a recursive procedure. An illustration of it is
given in Fig. 1 which shows the level density ��A;E�
for 70 particles (a closed-shell number for the three-
dimensional HO with spin s � 1

2 ) up to an excitation
energy of 30 �h!. The dots are calculated from ��A;E� 

c3�A;N � MA

3 � E= �h!�= �h! for discrete values E �
0; �h!; 2 �h!; . . . and with M70

3 � 210, the minimum num-
ber of oscillator quanta for 70 s � 1

2 particles. The curve
262502-2
shows the Fermi-gas result (1) with the HO single-particle
level density [in units � �h!��1] g��� � 1

2 �2s� 1��N � 1��
�N � 2�, with � � N �h! and N the major-shell quantum
number. For A � 70 particles, the Fermi energy corre-
sponds to N � 4, g��F� � 15�2s� 1�. Deviations from
the statistical treatment occur at low energy but also at
high energy because the dependence of g��� on � is
quadratic. Note that the number of configurations is
huge but is nevertheless given exactly by (6).

The recurrence relation (6) defines the problem in the
simplest possible situation but can be easily adapted to a
variety of cases as will be illustrated with some examples.

A first application concerns the enumeration of spuri-
ous states. To estimate nuclear level densities, one is
interested only in states that are in the ground configura-
tion with respect to the center-of-mass excitation, while
the solutions of (2) include nonphysical ones which rep-
resent a collective translation of the nucleus as a whole.
Let us denote the number of physical solutions of (2) as
~cc3�A;N e� where N e 
 N �MA

3 is the number of HO
quanta above the minimum required for A particles. The
number ~cc3�A;N e� is found by subtracting from the total
number those that can be constructed by acting (possibly
several times) with the step-up operator for the center-of-
mass motion, By

� 

P
i b

y
��i�=

����
A

p
, on any physical state

(see Chap. 4 of [16]). Hence,
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FIG. 2. The level density ��N;Z; E� for (a) N � Z � 8 and
(b) N � Z � 14. The dashed curves are the level densities
computed from Bethe’s two-component Fermi-gas formula
and the dots represent c3�N;Z;N �. The full curves result
from a fit to the dots with the back-shifted Bethe formula.
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~cc3�A;N e� � c3�A;N � �
XN e

N 0
e�1

1

2
�N 0

e � 1��N 0
e � 2�

� ~cc3�A;N e �N 0
e�: (9)

This recurrence relation allows an easy determination of
the fraction of spurious states, 1� ~cc3=c3, and is illus-
trated in Fig. 1 for A � 70.

An important generalization concerns systems consist-
ing of two different types of fermions, e.g., nuclei with
neutrons and protons. The occupation numbers in this
case are k�n1n2n3 , where � is the intrinsic label of the
fermion, say, � � � for a neutron and � � � for a proton.
The number of possible configurations for N neutrons, Z
protons, and N quanta, c3�N; Z;N �, can again be ob-
tained with recursive techniques. Alternatively, it follows
from

c3�N;Z;N � �
X
N 0

c3�N;N �N 0�c3�Z;N �: (10)

The quantities c3�N; Z;N � can be evaluated for closed as
well as for open shells and this provides a simple way for
estimating the effect of shell structure on nuclear level
densities. This is illustrated in Fig. 2 which shows the
exact HO results for systems corresponding to the nuclei
16O and 28Si and compares them to the two-component
Fermi-gas estimate [see Eq. (2B-42) of [2] together with
the single-particle density (6.519) of [17]]. This proce-
dure clearly underestimates the level density of an open-
shell nucleus. The figure also illustrates that the Bethe
formula with fitted single-particle level density a and
back shift � (i.e., replace E byE� �) is able to reproduce
the exact HO level density very well.

The main drawback of the Fermi-gas estimates is that
these are based on an independent-particle assumption.
Interactions between the particles are ignored and collec-
tive effects have to be introduced in a semiempirical way.
Likewise, the formalism developed so far assumes inde-
pendent particles in a HO and thus suffers from the same
problem. However, a simple generalization to an aniso-
tropic HO leads to a formulation that accounts for an im-
portant collective effect, namely, deformation. Although
the problem can be formulated for a HO with complete
anisotropy, assume by way of example that the quanta in
two directions, say, 1 and 2, have the same energy which
is different from the 3-quantum energy, �h!1 � �h!2 

�h!12 � �h!3. This is appropriate for a deformed nucleus
with axial symmetry; a prolate nucleus corresponds to
262502-3
!12 > !3 while an oblate one has !12 <!3. A Slater
determinant is specified by the occupation numbers
k�n1n2n3 and its energy is

Et � �N 12 � 1� �h!12 � �N 3 �
1
2� �h!3; (11)

where N 12 is the number of quanta in the 1- and 2-
directions, and N 3 that of quanta in the 3-direction.
The number of distinct states for A� � N neutrons and
A� � Z protons with N 12 and N 3 quanta is determined
by the solutions of

X1

n1n2n3�0

X


k�n1n2n3 � A�; � � ;

X1

n1n2n3�0

X
�

�n1 � n2�k�n1n2n3 �N 12;

X1

n1n2n3�0

X
�

n3k�n1n2n3 �N 3;

(12)

and shall be denoted as c3�N; Z;N 12;N 3�. The relevant
recurrence relation in this case is
c3�N; Z;N 12;N 3� �
X

N0Z0N 0
12

c2�N0; Z0;N 0
12� � c3�N � N0; Z� Z0;N 12 �N 0

12;N 3 � N � N0 � Z� Z0�; (13)

and has the following boundary values:

c3�N � 0; Z � 0;N 12;N 3� � �N 120�N 30; c3�N; Z;N 12;N 3� � 0; if N 12 �N 3 <MN;Z
3 ; (14)

where MN;Z
3 
 MN

3 �MZ
3 denotes the minimum number of quanta for N neutrons and Z protons.
262502-3



5 10 15 20 25
E (MeV)

1

2

3

4

5
L

og
F

Ar38

FIG. 3. The number of levels F�E� in 38Ar. The black jagged
lines are lower and upper limits obtained from counting levels
[18]. The smooth curves are the lower and upper limits for F�E�
obtained by fitting Bethe’s two-component Fermi-gas formula
(with back shift) to the experimental densities from [19]. The
grey lines are calculated following the procedure explained in
the text for two different deformations  2 � �0:2 (lower) and
 2 � 0:2 (upper).
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Possible applications of this formalism can be illus-
trated with a simple example. Figure 3 shows for 38Ar the
cumulative number of levels F�E� up to a certain energy
E, F�E� �

R
E
0 ��E

0�dE0. The calculation of the theoretical
level density requires the determination of the oscillator
frequencies which can be taken from (see Chap. 5 of
[17])!12 � !�1� 1

3�� and!3 � !�1� 2
3�� where �h! �

41A�1=3 MeV sets the energy scale and � �
�����������������
45=16�

p
 2,

with  2 the quadrupole deformation. For a given  2, one
then looks for the values of N 12 and N 3 that minimize
the energy (11) and for which the corresponding number
of configurations c3�N; Z;N 12;N 3� is nonzero. This
defines the ground-state configurations. The number of
configurations at nonzero excitation energy is obtained by
increasing the number of quanta or by transforming 3-
quanta into 12-quanta if !12 > !3 or vice versa if !12 <
!3. The results of such a calculation at two different
deformations,  2 � �0:2 and 0.2, are shown in Fig. 3
in grey. Given the simplicity of the approach, the agree-
ment can be called satisfactory. A possible source of
uncertainty is the choice of the deformation parameter.
It should be noted that the agreement is not always as
gratifying as it is in 38Ar: If one repeats a similar exercise
for nuclei such as Fe or Ni, the calculation overestimates
the observed densities because of the propinquity of the
N;Z � 28 shell closure which is absent from the HO.

The applications of the recursive formalism discussed
in this Letter have centered around the harmonic oscil-
lator mainly because of the intrinsic interest of such a
system and also because it can readily accommodate
deformation. It is, however, easy to generalize the present
recursive method to a system of fermions distributed over
262502-4
a set of single-particle levels with arbitrary energies �i
and degeneracies �i. It leads to recurrence relations [20]
that are similar but not identical to the ones derived from
partitions functions [21]. In fact, the applications re-
ported in [21] and, in particular, the method to exclude
continuum levels [22], can also be carried out with the
current formalism. The use of realistic single-particle
energies in combination with deformation effects and a
reliable estimate of the number of spurious states should
lead to fruitful applications of the present formalism in
the domain of nuclear level densities.

I thank Gérard Auger for fruitful discussions and Alex
Brown for his suggestion concerning spurious states.
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