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We study the dynamics of D-branes in a smooth time-dependent background. The theory on the
branes is a time-dependent noncommutative field theory. We find the metric and fluxes that determine
the dual holographic closed string theory. This provides a concrete example of holography in a

cosmological setting.
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In order to apply string theory to problems in cos-
mology, it is essential that we learn how to formulate
string theory in backgrounds with explicit time depen-
dence. Recently, various quotients of Minkowski space-
time by groups which acts both on space and time have
been studied as simple concrete realizations of string
theory on time-dependent backgrounds. Generic orbifolds
of space-time give rise to singularities such as closed
timelike loops. These closed causal curves tend to invali-
date the usual techniques of perturbative string theory
because of large backreaction. One example of a space-
time orbifold which avoids these complications is the
orbifold associated to the ‘“‘null-brane” geometry. This
quotient was first considered in [1]. String theory (and M
theory) in this particular quotient background has been
studied independently in [2], and also considered re-
cently in [3,4].

There are two particular distinguishing features of this
quotient: it preserves one-half of the flat space super-
symmetry, and it preserves an isometry along a light-
cone direction. For these reasons, null branes appear to
provide a promising laboratory in which to explore issues
of time dependence in the simplest of settings.

For a given string theory background, it is often in-
structive to study the dynamics of open strings by adding
D-branes. The physics of open strings can be further
simplified by taking decoupling limits which freeze out
massive open string modes and closed string excitations.
The limiting theory for the open strings is generally
nongravitational and can typically be formulated as a
field theory. However, it is possible to show in some
cases that these decoupled open strings have a dual de-
scription in terms of a theory of gravity, along the lines of
the anti—de Sitter conformal field theory (AdS/CFT)
correspondence.

In this paper, we will show that D-branes in the back-
ground of null branes have an interesting decoupling
limit. The decoupled theory turns out to be a novel
kind of noncommutative Yang-Mills theory whose non-
commutativity parameter varies as a function of the
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space-time coordinates. We will further show that this
theory has a simple dual supergravity description. The
supergravity dual is also time dependent. As such, this
noncommutative field theory can be thought of as a holo-
graphic description of a time-dependent string theory
background. In this particular example, all of the time
dependence of the dual supergravity background is en-
coded in the time dependence of the noncommutativity
parameter on the field theory side. From this explicit
example, we are led to the conclusion that the holographic
description of more realistic cosmological space-times
may very well require a nonlocal field theory.

Let us begin by reviewing the geometry of the null
brane. This is simply an orbifold of 3 + 1-dimensional
Minkowski space-time

ds?> = —2dxtdx™ + dx® + d7?

by the identification

1
xt ~xt, X~ ~x" +2mx + 5(277)2x+,

x~x+2mxt, z~z+ 27R.

Consider embedding this geometry into type IIA string
theory by appending six flat additional directions. The
quotient preserves the half of the supersymmetries which
satisfy

I'e=0. (D

We can now consider placing a D2-brane extended
along the xT, x7, and x directions, and localized in the
z direction. Such a D2-brane preserves spinors that satisfy

et =TT, 2)

where € and €~ are spinors with definite chirality under
IOT'!- - -T?. Conditions (1) and (2) are satisfied simulta-
neously by eight of the 32 supersymmetries of the type
ITA theory. The supersymmetry of branes in the null-
brane geometry was also considered recently in [5].
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In order to extract the decoupled theory on a D2-brane,
one usually scales a' to zero while keeping the two-
dimensional Yang-Mills coupling g%\, = g,/ Va! fixed.
(We have ignored numerical factors of order 1.) Here,
however, there will be infinitely many copies of this D2-
brane in the covering space because of the orbifolding.
Therefore, we need to account for the winding modes
which arise from the strings which stretch from a D2-
brane to its image. One way to do this is to scale R =
@'/R keeping R fixed. Then, in the &’ — 0 limit, all but
the ground state of the strings in the wound sector become
infinitely massive and decouple. The surviving wound
strings can then be thought of as momentum modes on
a D3-brane which now wraps the dual coordinate Z whose
radius is R.

We have not yet stated precisely what decoupled theory
actually lives on the D3-brane. In order to address this
question, it is useful to define a new set of coordinates by
the change of variables [6],

1
xT =y + §y+y2- 3)

This change of variables is singular, but it has two merits.
The quotient identification is simple,

x=y"y,

yt~y*, y~y+2m y ~y, z~z+2wR

and the metric is also simple:
ds? = =2dy*dy~ + (y*")*dy* + dz%

In particular, there are no off-diagonal terms involving
dz. We observe that the D3-brane in question is equivalent
to what one obtains after the following sequence of steps:

1. Start with a D3-brane wrapped on R"? X S! with

metric
ds®> = =2dy*tdy” + (y")?dy* + dz?, 7 ~7%+2mR.

2. T dualize along Z to obtain D2-branes on R!? X §!
localized on the z circle with metric,

ds?> = =2dy*tdy” + (y")?dy* + dz?, 4)
a/
7~z 7

3. Now “twist” the y coordinate with respect to z so
that

z~2z+27R, y~y+2m, &)

and introduce the new coordinate:
Z

F=y & ®)

4. Last, T dualize back along the z direction.
The sequence of steps enumerated above is a familiar
one. Had the metric on R"2 X S! been the flat metric,

ds* = —di? + dx* + dy* + dZ%,
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and had we twisted the y coordinate by the identification

2
z~2z+2wR, y~y+—R,
@
in following these steps, we would have obtained the
familiar noncommutative Yang-Mills theory with [7]

0: = —6v = A2

A similar procedure, where one twists the plane trans-
verse to the brane, was used to construct noncommutative
dipole theories where the dipole length is proportional to
the R charge [8,9].

In analogy, it is natural to propose that the theory on
the D3-brane obtained by 7 dualizing a D2-brane in the
null-brane background is a noncommutative Yang-Mills
theory with a * product defined by

fxg=fg+ i (d5f d;g — 0:f 958) + O(6%). (7)
Since we shifted y by a number of order 1,

6%% 6%%
1= —/R = —==,
o R
so #%% = R.

Since the y coordinates are somewhat singular com-
pared to the x coordinates, let us recast this product in
terms of the original coordinates. This can be done
straightforwardly. Simply map from y coordinates to the
x coordinates using the relation (3) with y replaced by ¥
so that one finds

One can therefore write the * product in the x coordinates
in the standard form

()= g(x) = f(x)g(x) + i0#70,,f(x)9,8(x) + O(6?)
()
with

0¥ = —9% = Rx*, 9t = —0v = Ry, 9)

and with all the other components of 8*” vanishing. It is
easy to verify that 6#” obeys the identity

0”8,0jk + Hjlalﬁki + 9"1819’7 =0

which ensures that the * product is associative and that all
of the terms higher order in 6 can be generated system-
atically using the methods of [10-12]. What we have,
therefore, is a concrete string theory realization of a
noncommutative Yang-Mills theory whose noncommuta-
tivity parameter varies over space-time.

In the remainder of this Letter, we will provide
two additional checks that this noncommutative Yang-
Mills theory is the decoupled theory of open strings on
the brane: (1) the analysis of open string variables in the
brane probe approximation, and (2) the analysis of the
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dual supergravity solution in the sense of AdS/CFT cor-
respondence.

To see what background the D3-brane sees, let us find
the T dual of the metric (4) with the twist (5) explicitly.
Because of the twist, it is useful to use the coordinate
introduced in (6). In terms of y and z, the metric (4) takes
the form

R(y*)* .
R+ (') Y
R? + (y*)? R(Y? )2

(4 R+ (7P 5)

ds* = —2dy*tdy” + 2

+

Using the formula for T duality which can be found, for
example, in [13], we find that the dual background is
given by

2

ds* = —2dy*dy” + S[6v)2d5? + dz?)

R*+ (y")

RG™)
= >———=dy ANdZ,
R+ (1) yAdz (10)

é R2 + (y+)2
er = g T

The metric, B field, and coupling explicitly depend on y™.
However, these are the parameters natural for the closed
strings which need not coincide with the parameters
natural for the open strings, especially in the presence
of a background B field. The map between open and closed
string parameters was derived in [14] for the case where
the metric and B fields do not vary. Although this is not
the case here, let us simply apply the formulas of [14] by
assuming that the background is sufficiently locally con-
stant. The open string metric, G, and the closed string
metric, g, are related by

nv

, . .0 N
G + | i (8uv T B, "
Substituting the values of g5y, g3z, and By; read off from
(10), we find

GV = ()2,

Gi=1 =R

This is in complete agreement with the form of the *
product anticipated in (7). Along similar lines, it is easy
to show that the open string coupling

ldet(g + B)
G. =e? |/ =
N e detg gS

is nonvarying and sets the value of the Yang-Mills cou-
pling constant:

g%M = GS‘

We therefore conclude that although both the background
metric and the coupling vary over space-time in the
closed string variables, the NS-NS B field also varies
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precisely in a manner that makes the open string metric
and the coupling static. Therefore, we end up with a
noncommutative Yang-Mills theory defined on a flat static
background, with all of the space-time dependence ab-
sorbed into the variation of the noncommutativity length
scale.

The noncommutative field theory described above is a
decoupling limit of open strings on a D-brane. It is there-
fore natural to ask if a dual supergravity description can
be found by taking the near horizon limit of the super-
gravity solution which describes this brane. Fortunately,
because the null brane is a simple orbifold of flat space, it
turns out to be possible to construct the supergravity dual
explicitly.

The near horizon geometry we seek can be constructed
by following the sequence of steps involving a T duality
and a twist described earlier. In fact, the construction
closely mimics the one used in [8] to construct the super-
gravity dual of the dipole theory.

1. Start with the metric of the flat D3-brane but using
the y coordinates

ds*> = f7V2[=2dy*dy” + (y)*dy* + dz?]
+ f12(dr? + r2dQd),
where f is the harmonic function of the D3-brane

gNa,l2
IS

f=1+

The 7 coordinate is compactified on a circle of radius R.
We will concentrate on the components of the metric
parallel to the brane since the transverse components
are unaffected in the following discussion.

2. T dualize along Z. We now have the type IIA metric
for D2-branes smeared along z,

ds* = f~V2[=2dy*dy” + (y*)?dy*] + f1/2dZ%

3. Twist the y coordinate so that the identification under
the shift in z becomes

z~2z+27R, y~y+2m
Introduce a new coordinate,
S—y—2
y=y R’

so that the identification of ¥ is trivial
z~z+ 2R, y~ 3.
The metric in terms of these new variables then becomes
f1/2R2(y+)2 5)2
R+ (")
RGT?  \2
2 >4y
fR*+ ()
4. T dualize back along the z direction. Applying for-
mulas that can be found in [13] gives

ds* = =2fV2dy*dy” +

R+ (")
" W(
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ds® = f"/2<—2dy+dy’

2
+ ]W%W[(f)zdf’z + d22]>, (11

RO*?

= Wdy A dZ
for the metric and B field. The dilaton and the background
Ramond-Ramond field strengths can also be found by
following this duality.

Now that we have found the supergravity solution (11)
describing the D3-brane in the background (10), we can
apply the standard near horizon scaling limit

a' — 0, U=

to derive the supergravity dual of the decoupled theory on
the brane. The metric in string frame is found to be

2 V2492 + 432
a5 = al| L(-2ayray + LD LA
VA
+ W(dUz +U%d03) |, (12)
where A = g%\(N is the ’t Hooft coupling.
Note that the form of the supergravity solution very
closely resembles the supergravity dual of noncommuta-
tive Yang-Mills theory described in [15,16]

2 2 2
st = o] L —ap +aw + LD
VA 1+ 4

A

+ %(dU2 + U%’Q%)} (13)
where A? = #’% is the noncommutativity parameter. By
comparing the form of (12) and (13), we can identify the
scale of noncommutativity in the (3, Z) plane to be R,
which is consistent with the form of the * product in (7).

The main claim of this paper is the duality between a
noncommutative Yang-Mills theory with noncommuta-
tivity parameter (9) and string theory on the background
(12). The background (12) is the T dual of the null-brane
geometry with large gravitational backreaction due to the
presence of the D3-branes. This background inherits the
explicit time dependence of the null-brane geometry.
The noncommutative field theory can therefore be inter-
preted as a holographic description of a time-dependent
string background. It is interesting that although various
fields, including the metric, dilaton, and the B field, vary
over space-time in the bulk description, the only space-
time varying parameter on the field theory side appears to
be the noncommutativity parameter.
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The decoupled field theory is an interesting theory in
its own right. To our knowledge, this is the first concrete
string theory realization of a noncommutative field
theory with a nonconstant noncommutativity parameter.
Since the noncommutativity parameter *” does not have
an x* component, the action will not contain higher x*
derivative terms, so it would be natural to quantize the
theory treating xT as time. It would, nonetheless, be
nontrivial to quantize this theory as the action depends
explicitly on x* through the noncommutativity para-
meter. It would be interesting to explore the standard
issues of noncommutative field theory for this kind of
model, including thermodynamics, UV/IR mixing, soli-
ton dynamics, the gauge invariant observables, and S
duality to name just a few.

The main appeal of the duality presented in this paper
is that it establishes concretely the possibility of defining
a cosmological background using holography. It is very
interesting to speculate on the possibility of finding a
holographic dual to more realistic cosmologies along
similar lines. The example considered in this paper
clearly demonstrates that the holographic theory, should
one exist, need not be a local quantum field theory.
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