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Inflation from Quantum Geometry
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Quantum geometry predicts that a universe evolves through an inflationary phase at small volume
before exiting gracefully into a standard Friedmann phase. This does not require the introduction of
additional matter fields with ad hoc potentials; rather, it occurs because of a quantum gravity
modification of the kinetic part of ordinary matter Hamiltonians. An application of the same
mechanism can explain why the present day cosmological acceleration is so tiny.
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states of quantum geometry one obtains isotropic loop The matter Hamiltonian HH 	 is an unbounded operator
Inflation has been proposed as an elegant solution of
severe problems of the cosmological standard model [1].
However, it suffers from the lack of a natural explanation
from fundamental physics. Usually, a scalar field, the
inflaton, is proposed which requires a special potential
and initial conditions for sufficient inflation. The infla-
tionary phase is usually deemed to happen after the
Planck epoch of the universe, but it has been speculated
that there is a quantum gravity origin.

The first such realization employed effective higher
curvature terms in the gravitational action [2] which leads
to de Sitter–like solutions, or inflation, even without
introducing a cosmological constant explicitly. However,
in this perturbative higher derivative theory not all solu-
tions are reliable and nonanalytic ones in the perturbation
parameter (the Planck length) have to be excluded [3]. In
particular, this has to be done for the de Sitter–like
solutions since their effective cosmological constant is
given by an inverse power of the Planck length.

A more recent idea [4] is to use modified dispersion
relations, which are expected to appear in most quantum
gravity theories, for an explanation of inflation. In fact,
this is possible provided that the dispersion relation has a
special form with the momentum decreasing to zero for
large energies. Such dispersion relations have been pro-
posed, but not yet derived from any theory of quantum
gravity. Moreover, in current derivations of dispersion
relations one obtains a power series in the energy which
is inconclusive concerning the high energy behavior.

A lesson is that a nonperturbative approach would
produce the most reliable answer as to whether or not
inflation can be derived from quantum gravity. Currently,
the most direct nonperturbative realization of a quantum
theory of gravity is provided by quantum geometry (also
called loop quantum gravity, [5–7]), which is a canonical
quantization of general relativity in terms of Ashtekar’s
variables. In recent years, techniques to study its cosmo-
logical sector have been developed [8] which will be used
here. We will see that quantum geometry can naturally
lead to inflation at small volume with a graceful exit.

Loop quantum cosmology.—By studying isotropic
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quantum cosmology which reproduces the standard
Wheeler-DeWitt approach at large volume [9], but leads
to significant deviations at small volume caused by the
discreteness of geometry. Notable consequences are the
absence of cosmological singularities [10] and the pre-
diction of ‘‘dynamical initial conditions’’ for the wave
function of a universe [11]. These already offer solutions
to some of the pressing cosmological problems; here we
ask what this implies for the occurrence of inflation.

In what follows we recall the basic formulas necessary
for this investigation. Basic classical variables are the
connection component c and the isotropic triad compo-
nent p. Because of the two possible orientations of the
triad, p can also take negative values, but later we will
need only positive ones. It is related to the scale factor a
by jpj � a2. For spatially flat models, which will only be
used here, c is proportional to the extrinsic curvature k �
1
2 _aa. The variables �k; p� form a canonical pair with
fk; pg � 1

3�, � � 8�G being the gravitational constant.
They appear in the gravitational part of the Hamiltonian
constraint

H � �6��1k2
����
p

p
	H	; (1)

where H 	 is the matter Hamiltonian for a field 	 (this
represents a standard matter field and need not be an
inflaton) which for simplicity will be taken to be of the
standard form H	 � 1

2 a
�3p2

	 	 a3V�	�. Here, V�	� is
an arbitrary potential and p	 � a3 _		 the momentum
canonically conjugate to 	. The Hamiltonian constraint
H generates the dynamics of the theory and gives the
Friedmann equation after using k � 1

2 _aa.
A standard Wheeler-DeWitt quantization would pro-

ceed by using wave functions  �p;	�. Consequently, p̂p
has a continuous spectrum containing zero and, after
choosing the scale factor as internal time, the Hamil-
tonian constraint turns into a second order differential
time evolution equation, the Wheeler-DeWitt equation
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FIG. 1. Eigenvalues dj;n of the density operator d̂dj [in units of
��l2P�

�3=2] for two different j, compared to the approximation
p�n=2j�6V�1

�n�1�=2 (solid lines) and the classical expectation
V�1
�n�1�=2 (thick dashed line). The dotted lines are the approxi-

mations (4) for small n.
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owing to the kinetic term containing an inverse power of
the scale factor. For the matter variables we can choose a
standard quantization which promotes 	 to a multiplica-
tion operator and p	 to the derivative operator �i 
h@=@	.

We will use the same matter field quantization for
loop quantum cosmology. Concerning the geometrical
degrees of freedom, however, the situation is very differ-
ent. Most notably, the spectrum of geometric operators
such as âa is discrete, which is directly inherited from the
full theory of quantum geometry. This implies that, in a
metric representation, the wave function sn�	� replacing
 �p;	� lives on a discrete space labeled by an integer n
representing the geometry. The integer n also appears in
the discrete eigenvalues of p̂p which have the form

pn �
1

6
�l2Pn; (2)

where the Barbero-Immirzi parameter � occurs. It is a
positive real number which sets the scale for the discrete-
ness and plays the role of a new dimensionless fundamen-
tal constant which controls the continuum limit (�! 0
and n! 1) [9]. Its value � � ln2=�

���
3

p

 0:13 has been

determined by comparing the black hole entropy ob-
tained from quantum geometry with the semiclassical
result [12]. Also the volume operator V̂V has a discrete
spectrum with eigenvalues [13]

V�n�1�=2 �

�
1

6
�l2P

�
3=2 ����������������������������������

�n� 1�n�n	 1�
p

: (3)

Both operators p̂p and V̂V have eigenvalue zero for n � 0.
Therefore, the obvious definition of their inverse fails and
we have to face the problem of how to quantize the kinetic
part of the matter Hamiltonian.

Inverse volume operators.—It turns out [14] that there
is a well-defined, finite quantization of inverse powers of
the scale factor in loop quantum cosmology, which makes
use of a general technique of full quantum geometry
[15,16]. This can be interpreted as providing a natural
curvature cutoff and plays a crucial role in the proof of
absence of cosmological singularities [10]. Here we illus-
trate this technique in the isotropic context: Using the
symplectic structure it is easy to see that the scale factor
can be written as a � 2��1fk; Vg. This implies

a�1 � aV�2=3 � 2��1V�2=3fk; Vg � 6��1fk; V1=3g;

where the negative power of the volume has been ab-
sorbed into the Poisson bracket. This reformulation allows
a quantization by expressing k in terms of a holonomy of
the Ashtekar connection (which is a basic operator in
quantum geometry), using the volume operator and turn-
ing the Poisson bracket into a commutator. However, since
the expression for a�1 is a rather complicated function of
the basic variables, the final quantization contains quan-
tization ambiguities of different types. Most of them only
affect the lowest eigenvalues for small n of the order of 1;
but there is one, resulting from the use of arbitrary
representations with label j for the holonomy, which
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can also affect higher eigenvalues [17]. This quantization
ambiguity provides the mechanism which will be ex-
ploited here to obtain inflation in an effective classical
description; as with all quantization ambiguities, the final
judgment about their value has to come from obser-
vations. We will employ a quantization d̂dj of the density
d � a�3 which has eigenvalues (see Fig. 1)

dj;n �
�
12�j�j	 1��2j	 1��l2P�

�1
Xj
k��j

k
�������������������������
V�jn	2kj�1�=2

q �
6

labeled by the ambiguity parameter j, a half-integer (we
use an operator d̂dj which is the sixth power of the opera-
tor ŝsj of [17]).

An approximation, which gets better for large j, is
obtained as dj;n ’ V�1

�1=2��n�1�p�n=2j�
6 where the function

p�q� �
8

77
q1=4f7��q	 1�11=4 �jq� 1j11=4�

� 11q��q	 1�7=4 � sgn�q� 1�jq� 1j7=4�g

has been derived in [17]. This formula has the asymptotic
expansions

dj;n ’
126

76
V�1
�n�1�=2�n=2j�

15=2 (4)

for n� 2j and dj;n ’ V�1
�n�1�=2 for n� 2j. The approxi-

mation (4) shows how the classical divergence of the
inverse volume is truncated by the large power of n. In
particular, the dependence on n of the density dj is very
different at small and large n which, when used in the
matter Hamiltonian, implies severe changes of the cos-
mological evolution near the classical singularity. If j is
larger than one, we can study this evolution by an effec-
tive matter Hamiltonian which incorporates these differ-
ent behaviors. To this end, we write the density as a
function of a instead of n using the relation a2 � 1

6�l
2
Pn
261301-2
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FIG. 2. Numerical solutions a�t� (in units of
����
�

p
lP) of the

effective Friedmann Eq. (8) for V�	� � 0 (solid) and a small
quadratic potential (dashed), both with j � 100.
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which follows from (2). This yields

dj�a� � a�3p�3a2=�l2Pj�
6; (5)

with approximations

dj�a� ’
126

76

�
1

3
�l2Pj

�
�15=2

a12 (6)

for a2 � 1
3�l

2
Pj and dj�a� ’ a�3 for a2 � 1

3�l
2
Pj. The ap-

proximation for small a disappears in the continuum
limit �! 0, in which case we only obtain the classical
behavior a�3.

Effective Friedmann equation.—Since the spectra of
geometric operators in loop quantum cosmology are dis-
crete, the evolution equation in an internal time variable
will also be discrete, i.e., a difference rather than a differ-
ential equation [18]. Its main part is of the form [8]

�Ds�n�	� :� �V�n	4�=2 � V�n	4�=2�1�sn	4�	�

� 2�Vn=2 � Vn=2�1�sn�	�

	 �V�n�4�=2 � V�n�4�=2�1�sn�4�	�

� �
1

3
�3�l2P ĤH 	�n�sn�	�; (7)

where n (analogous to p) is the discrete internal time
(negative n, which are not being considered here, corre-
spond to time before the classical singularity [10]). If the
wave function is not oscillating at small scales (from n to
n	 1), the difference operator D can be approximated by
a differential operator which turns out to be 3��3l�2

P D 

2
3 l

4
P
@2

@p2

����
p

p
, i.e., the operator appearing in the standard

Wheeler-DeWitt equation [9]. Noting that 1
3 il

2
P
@
@p quan-

tizes k � 1
2 _aa, the resulting evolution equation corresponds

to the Friedmann equation 3
2 _aa2a � �H	�a�. The matter

Hamiltonian, however, does not have theWheeler-DeWitt
form for all a because we were forced to quantize the
inverse volume to the well-defined operator d̂dj (j can be
regarded as a new quantum number characterizing the
matter component). Therefore, instead of the density a�3

we have the effective density dj�a� from (5) which is
modified at small a. Our Friedmann equation for H �
_aa=a then is

H2 �
2

3
�a�3H �j�

	 �a� �
2

3
�
	
1

2
a�3dj�a�p

2
	 	 V�	�



:

(8)

Superinflation.—To simplify the analysis we first as-
sume that the matter field 	 is a free massless field, i.e.,
V�	� � 0. Then, p	 is constant and at large volume
we have the Friedmann phase a�t� / �t� t0�

1=3. If a2 is
small compared to 1

3�l
2
Pj, however, the density behaves as

in (6) which leads to superinflationary expansion [19]
a�t� / �t0 � t��2=9 � �t0 � t�2=�3�1	w�� with an equation
of state parameter w � �4. (p	 has to be nonzero, but
even a quantum fluctuation would suffice to get the infla-
tionary growth started.) There is a pole at t � t0, but it
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is never reached because the small-a approximation
breaks down when a becomes larger. In fact, the super-
inflationary phase automatically ends when the peak of
dj�a� is reached, exhibiting a graceful exit into the
Friedmann phase (Fig. 2). Note also that w is not constant
during inflation; in fact it varies smoothly between �4
for small a and w � 1 for large a. A nonzero potential
does not change this behavior qualitatively; depending on
its form, however, it could lead to a second phase of
potential driven inflation. This would occur more generi-
cally than in the standard scenario because the first phase
can drive the scalar field up the potential hill, even if 	
starts at the value 	 � 0.

Inflation can also be seen from the wave function sn�	�
(Fig. 3; see [20] for details). At small n amplitude and
oscillation length decrease toward larger n (indicating
acceleration). After this phase (n > 2j), the oscillation
length increases (deceleration).

The appearance of an inflationary phase is a direct
consequence of the modified behavior of the density
dj�a� for a2 < 1

3�l
2
Pj. This shows that such a phase dis-

appears in the continuum limit �! 0 or the classical
limit lP ! 0. It is only possible if we incorporate the
discreteness which requires � > 0, and lP > 0.

The coefficient w which determines the rate of super-
inflationary growth is not unique and depends on the
quantization choices. Instead of d̂dj one can, e.g., use an
operator d̂dm;j with eigenvalues

dm;j;n �
�
12�j�j	 1��2j	 1��l2P�

�1

�
Xj
k��j

kVm
�jn	2kj�1�=2

�
3=�2–3m�

;

with 0<m< 2
3 whose eigenvalues at large n drop off

as n�3=2. At small a the behavior is dm;j�a� / al where
l � 6=�2–3m� is bounded by l > 3. This leads always
to superinflation a / �t0 � t�2=�3�l� with coefficient
261301-3
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FIG. 3. An example for the discrete wave function sn�	� with
a free massless scalar field and j � 200. Negative n represent
time before the classical singularity.
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w � �l=3 but can get arbitrarily close to standard in-
flation (w � �1). In fact one can also obtain phases of
standard or power-law inflation [21], though in a less
natural way (e.g., with d̂d1d̂d

2=3
j;1=3V̂V

2=3 which grows as a3

for �l2P � a2 � �l2Pj).
Remarks.—One may wonder how a quantum gravity

effect can influence the universe expansion at large scales
without a violation of the classical limit. This is possible
because the limit lP ! 0 must include n! 1 in order to
keep a2 � 1

3�l
2
Pn nonzero. For n! 1 we are always in a

Friedmann phase, no matter how large j is. However, lP is
nonzero and the classical limit must not be performed
completely. This leaves open the possibility of quantum
gravity effects at large volume.

Choosing very large values for the parameter j leads to
matter Hamiltonians with kinetic terms which even today
are still growing with a and so exhibit a superinflationary
phase at the present time (this matter component would
behave as ‘‘phantom matter’’ with w<�1 [22]). While
this involves huge j and so is less natural, it can explain
why today’s cosmological constant is so small thanks to a
suppression by an inverse power of j: If we assume the
potential term to be negligible, i.e., V�	� 
 0 and thus
p	 
 const, the Friedmann Eq. (8) implies

H2 / �a=
���
j

p
lP�9�

���
j

p
lP��6p2

	

when the small-a approximation is valid. In the acceler-
ated phase we have H2 < �

���
j

p
lP�

�6p2
	, which is well be-

low the Planck mass for large j.
Conclusions.—In this Letter we presented what we

believe is the first direct derivation of inflation from a
candidate for a quantum theory of gravity. The arguments
have been given in the context of isotropic models, but we
used only techniques and generic properties which apply
in full quantum geometry. Therefore, inflation with a
graceful exit into a standard Friedmann phase can be
regarded as a natural prediction of quantum geometry. In
fact, the inverse volume increases in a neighborhood of
a � 0 which leads to an accelerated expansion after
261301-4
evolving through a � 0 (which is not a singularity in
loop quantum cosmology [10]). The modified behavior of
the inverse volume is always present for small values of a
below the Planck scale (even for the minimal j � 1

2 ).
However, in this regime the classical space-time picture
breaks down and the evolution cannot be described sim-
ply by a scale factor. This region has to be better under-
stood before one can find a reliable estimate of the scale
factor at the start of inflation. While it is clear that
inflation ends when the scale factor reaches a value a2 

1
3�l

2
Pj, its beginning lies in the Planck regime and can in

principle be arbitrarily close to zero. Its value determines
the number of e-foldings of the inflationary phase. The
question of how inflation can be described in the quantum
regime and its implications for fluctuations deserve fur-
ther study. Furthermore, the acceptability of inflation at
the Planck scale with a very early superinflationary
phase, which has been debated in the literature, has to
be clarified.

The same effect can explain the present-day cosmo-
logical acceleration. While this appears less natural, it
implies that if the mechanism proposed here is respon-
sible, today’s cosmological acceleration has to be small.
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