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We derive tight quadratic inequalities for all kinds of hybrid separable-inseparable n-particle density
operators on an arbitrary dimensional space. This methodology enables us to derive a tight quadratic
inequality as tests for full n-partite entanglement in various Bell-type correlation experiments on the
systems that may not be identified as a collection of qubits, e.g., those involving photons measured by
incomplete detectors. It is also proved that when the two measured observables are assumed to precisely
anticommute, a stronger quadratic inequality can be used as a witness of full n-partite entanglement.
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difficult to claim strictly that the observed correlations
are obtained by measuring subsystems with only two-

allowed, a stronger quadratic inequality can be used as a
witness of full n-partite entanglement.
Since the 1980s, it has been a problem how to confirm
multipartite entanglement experimentally. Recently, we
have been given precious experimental data by efforts of
experimentalists [1,2]. Proper analysis of these experi-
mental data then becomes necessary, and as a result of
such analysis [3], the experimental data obtained by Pan
and co-workers [2] confirms the existence of genuinely
three-particle entanglement under the assumption that
proper observables are measured in the experiment.
However, it was discussed [4] that for other experimental
data there is a loophole problem in confirming three-
particle entanglement, and the loophole problem remains
unresolved. This means that there have not been enough
discussions about what kind of data are needed for con-
firming multipartite entanglement.

There have been many researches on the problem,
providing inequalities for functions of experimental cor-
relations [3–10]. Among them, assuming k-partite split of
the system [11] without assuming a specific partition,
Werner and Wolf derived an upper bound 2�n�k�=2 for
expectation values of n-particle Bell-Mermin operators
B;B0 [10,12] under the assumption that suitable partial
transposes of the density operator are positive [10]. The
inequality derived by Werner et al. is useful because it
tells us a number k such that the given state is at most k
separable [11,13].

Recently, Uffink introduced a nonlinear inequality
aimed at giving stronger tests for full n-partite entangle-
ment than previous formulas. For qubit systems, Uffink
has derived [9] a tight quadratic inequality for the states
where one qubit is not entangled with any other qubit;
namely, the states written as a convex sum over the states
of form �1 � �2;...;n.

In most of the real experiments, we have to deal with
higher dimensional systems rather than qubit systems.
For example, when polarizations of photons from a non-
ideal source are measured by imperfect detectors, it is
0031-9007=02=89(26)=260401(4)$20.00
dimensional Hilbert spaces, due to the ambiguity in the
number of photons. The arguments about higher dimen-
sional systems will thus be necessary in order to establish
tests applicable to real experiments without making aux-
iliary assumptions as to the dimension of the measured
space or as to measured observables.

In deriving a witness of full n-partite entanglement, it
should be ensured that the witness rules out all hybrid
separable-inseparable states except genuine fully n-
partite entangled states. The hybrid separable-inseparable
states are depicted as follows: Consider a partition of
n-particle system f1; 2; . . . ; ng into k nonempty and dis-
joint subsets �1; . . . ; �k, where

P
k
i�1 j�ij � n, to which

we refer as a k-partite split of the system [11] . Let us now
consider the density operators � on H �

Nn
j�1 H j,

where H j represents the Hilbert space with respect to
particle j. Then all hybrid separable-inseparable states
with respect to partition �1; . . . ; �k can be written as

� �
X
l

pl��
k
i�1�

�i
l �;

 
pl 
 0;

X
l

pl � 1

!
; (1)

where ��i
l ;8l are the density operators on the partial

Hilbert space
N

j2�i
H j. States (1) are called k separable

with respect to a partition �1; . . . ; �k.
In this paper, we derive the optimal upper bound of

hBi2 � hB0i2 for any partition of the systems �1; . . . ; �k
of an arbitrary dimensional space. It turns out that the
optimal upper bound depends only on two parameters k
and m, and not on the detailed configuration of the
partition, where m is the number of particles which are
not entangled with any other particles. The maximum is
given by 2n�m�2k�1. Using this maximum, we genuinely
prove that the optimal upper bound that is utilizable to
confirm full n-partite entanglement (n 
 3) of an arbi-
trary dimensional system is 2n�2. Later, we show that if
an auxiliary assumption as to measured observables is
 2002 The American Physical Society 260401-1
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In what follows, we derive tight quadratic inequalities
for hybrid separable-inseparable states with respect to
partition �1; . . . ; �k of an arbitrary dimensional space.
It is assumed that a measurement with two outcomes, �1,
is performed on each particle. Such a measurement is
generally described by a positive-operator-valued mea-
sure (POVM), fF�; F�g; F� � F� � 1; F�; F� 
 0, and
the corresponding observable is given by a Hermitian
operator A � F� � F�, which has a spectrum in
��1; 1�. We assume that for each particle j, either of
two such observables Aj or A0

j is chosen, where �1 �
Aj; A0

j � 1;8j.
The Bell-Mermin operators take a simple form when

we view on a complex plane using a function f�x; y� �
1��
2

p e�i�=4�x � iy�; x; y 2 R. Note that this function is in-
vertible, as x � Ref � Imf; y � Ref � Imf. The Bell-
Mermin operators BNn

and B0
Nn

are defined by [10,12]

f�BNn
;B0

Nn
� � �n

j�1f�Aj; A0
j�; (2)

where Nn � f1; 2; . . . ; ng.We also define B� for any subset
� � Nn by

f�B�;B
0
�� � �j2�f�Aj; A

0
j�: (3)

It is easy to see, when �;��� Nn� are disjoint, that

f�B�[�;B
0
�[�� � f�B�;B

0
�� � f�B�;B

0
��; (4)

which leads to

B�[� � 1=2�B�B
0
� �B0

�B�� � 1=2�B�B� �B0
�B

0
��;

B0
�[� � 1=2�B�B

0
� �B0

�B�� � 1=2�B�B� �B0
�B

0
��:

(5)
First, we prove that the following inequality proposed by
Uffink for qubit systems is also valid for an arbitrary
dimensional system:

hB�i
2 � hB0

�i
2 � 2j�j�1; �j�j 
 2�: (6)

In order to see this, we use the following lemma.
Lemma: Let �1 � Xi; X0

i � 1 be Hermitian operators
(i � 1; 2), and define Y; Y0 as follows:

f�Y; Y0� � f�X1; X
0
1� � f�X2; X

0
2�: (7)

Then

hYi2 � hY0i2 � 2: (8)

The lemma is proven in the following way: Note that

Y � �1=2�fX1�X2 � X0
2� � X0

1�X2 � X0
2�g;

Y0 � �1=2�fX0
1�X

0
2 � X2� � X1�X0

2 � X2�g;
(9)

and let B� be Y cos� � Y0 sin�. Let us derive the maxi-
mum value of tr��B��. Note that tr��B�� is a linear
function of each Xi or X0

i, keeping � fixed. Therefore we
may consider only the set of extremal points in the convex
set of Hermitian operators with �1 � X � 1. Hence we
may assume X2

i � X02
i � 1�i � 1; 2�. We thus have

Y2 � Y02 � 1� �1=4��X1; X0
1� � �X2; X0

2�

� 1� A�
1 � A�

2 ; (10)
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where A�
i � �i=2��Xi; X

0
i� (A�

i are Hermitian operators)
and

fY; Y0g � �1=2�fX1; X0
1g � fX2; X0

2g � 2A�
1 � A�

2 ; (11)

where A�
i � �1=2�fXi; X0

ig (A�
i are Hermitian operators).

Then we obtain

B2
� � 1� A�

1 � A�
2 � sin2�A�

1 � A�
2 : (12)

This implies

tr��B2
�� � maxf1� kA�

1 � A�
2 � A�

1 � A�
2 k; 1

� kA�
1 � A�

2 � A�
1 � A�

2 kg; (13)

where k � k means the operator norm. Note that

A�
1 � A�

2 � A�
1 � A�

2 � �1=2�f�A�
1 � iA�

1 � � �A�
2 � iA�

2 �

� �A�
1 � iA�

1 �

� �A�
2 � iA�

2 �g; (14)

and

A�
1 � A�

2 � A�
1 � A�

2 � �1=2��X0
1X1 � X2X

0
2 � X1X

0
1

� X0
2X2�: (15)

According to relationships such as kX0
1X1k �

k�X1X0
1��X

0
1X1�k

1=2 � k1k1=2 � 1, we get

kA�
1 � A�

2 � A�
1 � A�

2 k � 1: (16)

Similarly, we also get

kA�
1 � A�

2 � A�
1 � A�

2 k � �1=2�kX0
1X1 � X0

2X2 � X1X0
1

� X2X0
2k � 1: (17)

Therefore we have jtr��B��j
2 � tr��B2

�� � 2 by the vari-
ance inequality. Now by taking

cos� �
hYi�������������������������

hYi2 � hY0i2
p ; sin� �

hY0i�������������������������
hYi2 � hY0i2

p ;

(18)

we obtain hYi2 � hY0i2 � 2, Q.E.D.
Let us consider a set � � Nn, where j�j 
 2. Let � be

�nfjg, where j 2 �. Then, from Eq. (4), we have

f�B�;B
0
�� � f�B�;B

0
�� � f�Aj; A

0
j�: (19)

It has been known that the maximum of hB�i is 2�j�j�1�=2

[10]. Noting that f�cx; cy� � cf�x; y�; c 2 R and �1 �
2��j�j�1�=2B� � 1, according to the lemma by taking
X1 � 2��j�j�1�=2B�; X0

1 � 2��j�j�1�=2B0
�; X2 � Aj, and

X0
2 � A0

j, we obtain the quadratic inequality

hB�i
2 � hB0

�i
2 � 2j�j�1; �j�j 
 2�; (20)

where we used j�j � j�j � 1.
Next, we calculate an upper bound of hBNn

i2 � hB0
Nn
i2

for states of the form �k
i�1�

�i . From Eq. (5), we have

hB�[�i
2 � hB0

�[�i
2 � �1=2��hB�B

0
� �B0

�B�i
2

� hB�B� �B0
�B

0
�i

2�:

(21)
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Using Eq. (21), we obtain
hBNn
i2 � hB0

Nn
i2 � �1=2��hB�1

B0
Nnn�1

�B0
�1
BNnn�1

i2 � hB�1
BNnn�1

�B0
�1
B0

Nnn�1
i2�

� �1=2�f�hB�1
ihB0

Nnn�1
i � hB0

�1
ihBNnn�1

i�2 � �hB�1
ihBNnn�1

i � hB0
�1
ihB0

Nnn�1
i�2g

� �1=2��hB�1
i2 � hB0

�1
i2��hBNnn�1

i2 � hB0
Nnn�1

i2�: (22)
Repeating this, we obtain

hBNn
i2 � hB0

Nn
i2 � �1=2�k�1

Yk
i�1

�hB�i
i2 � hB0

�i
i2�: (23)

Without loss of generality, we assume that j�ij � 1 for
1 � i � m and j�ij 
 2 for m� 1 � i � k. Applying
hB�i

i2 � hB0
�i
i2 � 2 for j�ij � 1 and Eq. (6), we obtain

hBNn
i2 � hB0

Nn
i2 �

Yk
i�m�1

2�j�ij�1��1=2�k�m�1

� 2n�m�2k�1; (24)

where we used
P

k
i�m�1�j�ij � 1� � �n �m� � �k� m�.

We then conclude [14] that, for any state � that is k
separable with respect to �1; . . . ; �k,

�tr��BNn
��2 � �tr��B0

Nn
��2 � 2n�m�2k�1: (25)

The maximum depends only on two parameters k and m
but not on the detailed configuration of the partition.
Clearly, the bound (25) is optimal.

The inequality for testing full n-partite entanglement
for n 
 3 is obtained by maximizing the right-hand side
of (25) under the condition k 
 2. Noting that m � k � 1
when k < n, we obtain

hBNn
i2 � hB0

Nn
i2 � 2n�2: (26)

Violations of the inequality (26) imply full n-partite
entanglement.

For multiqubit systems, Uffink considered the case of
partitions of the form f1g; f2; . . . ; ng, and has presented the
quadratic inequality (26) for testing whether n-particle
states are fully entangled [9]. In what we should pay
attention to, we have to check that for all hybrid
separable-inseparable states except genuine fully en-
tangled states, the optimal upper bounds are smaller
than or equal to 2n�2, in order to ensure that the relation
(26) can be used as tests for full n-partite entanglement. In
this point, we genuinely proved that the violations of the
relation (26) are sufficient for confirming fully n-partite
entangled states.We have also proven that the relation (26)
can be derived not only for multiqubit systems but also for
higher dimensional systems.

The inequality (25) also implies

jtr��BNn
�j � 2�n�m�2k�1�=2: (27)

It is known that jtr��BNn
�j � 1 when the system is fully

separable [10]. Hence we obtain an upper bound [15]
260401-3
jtr��BNn
�j �

	
2�n�m�2k�1�=2 k < n

1 k � n:
(28)

According to Eq. (5), the equality of the relation (28)
holds when hB�i

i � hB0
�i
i � 1 for 1 � i � m, hB�i

i �

hB0
�i
i � 2�j�ij�2�=2 for m� 1 � i � k � 1, and hB�k

i �

2�j�kj�1�=2. We can find a state and Hermitian operators
�1 � Aj; A

0
j � 1 that satisfy the above relations [16].

Hence the bound (28) is optimal.
For partitions of the form f1g; f2g; . . . ; fmg; fm�

1; . . . ; ng�m � n � 1�, the relation (28) leads to the result
of Gisin and Bechmann-Pasquinucci [6], i.e., the bound
jhBNn

ij � 2�n�m�1�=2. Noting that m � k � 1 when k < n,
the relation (28) leads to the result of Werner and Wolf
[10], i.e., jhBNn

ij � 2�n�k�=2 by taking the maximum over
m with fixed k. Collins et al. considered the cases for
partitions of the form f1g; f2g; f3; 4g or f1; 2g; f3; 4g or
f1g; f2; 3; 4g and presented the bounds as

���
2

p
;
���
2

p
; 2,

respectively [7]. These bounds are also derived from the
relation (28).

So far, we derived the threshold value (i.e., 2n�2) of
hBNn

i2 � hB0
Nn
i2 for use as a full n-partite entanglement

witness over all observables satisfying �1 � Aj; A0
j � 1.

Now, let us consider an additional assumption that the two
measured observables anticommute, i.e., fAj; A

0
jg � 08j.

This assumption is approximately fulfilled within the
accuracy of the measurement apparatus in the common
experimental situations, e.g., when we measure Pauli
operators �x and �y for each particle. With this assump-
tion, the threshold value of hBNn

i2 � hB0
Nn
i2 becomes as

small as 2n�3 as is shown below. This implies that we can
use a stronger quadratic inequality as tests for full
n-partite entanglement in this case.

Suppose that fAj; A
0
jg � 0 and �1 � Aj; A

0
j � 1;8j.

Let us take Aj� � Aj cos� � A0
j sin�; and derive the maxi-

mum value of tr��Aj��. Since we are interested only in the
maximum, we may assume A2

j � A02
j � 1. Then we get

A2
j� � 1� �1=2�fAj; A0

jg sin2� � 1. The variance inequal-
ity leads to jtr��Aj��j

2 � tr��A2
j�� � 1: Now take

cos� � hAji=
����������������������������
hAji

2 � hA0
ji
2

q
; sin� � hA0

ji=
����������������������������
hAji

2 � hA0
ji
2

q
,

then we get hAji
2 � hA0

ji
2 � 18j: This means that the

relation (6) holds even for j�j � 1. Hence we obtain

hB�i
2 � hB0

�i
2 � 2j�j�1; �j�j 
 1�: (29)

Similar to the argument that derives (25), applying the
relation (29), we conclude
260401-3
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�tr��BNn
��2 � �tr��B0

Nn
��2 � 2n�2k�1: (30)

The inequality for testing full n-partite entanglement is
obtained by maximizing the right-hand side of (30) under
the condition k 
 2. We obtain [17]

hBNn
i2 � hB0

Nn
i2 � 2n�3: (31)

We give an example that the relation (31) is stronger
than (26) as a witness of full n-partite entanglement for
multiqubit systems. We assume that Aj � ~aaj � ~��; A0

j �
~aa0
j � ~��, where ~aaj and ~aa0

j are normalized vectors in R3

and ~�� is the vector of Pauli matrices, i.e., ~�� �
��x; �y; �z�. The condition fAj; A

0
jg � 0 leads to ~aaj � ~aa0

j �
0. Let us consider the following multiqubit states [11]:

� � xj�nih�nj �
1� x
2n I; (32)

where I is the identity operator for the 2n-dimensional
space and j�ni is an n-qubit GHZ state [18], i.e.,

j�ni �
1���
2

p �j�1;�2; . . . ;�ni � j�1;�2; . . . ;�ni�: (33)

It is easy to see that the maximum of hBNn
i2 � hB0

Nn
i2 is

2n�1x2 with ~aaj � ~aa0
j � 08j (see [19]). Hence, assuming

that x is in the range of

1

2
< x �

1���
2

p ; (34)

we can confirm full n-partite entanglement from (31),
which cannot be confirmed by (26). Hence if the mea-
surement setups are precisely chosen as fAj; A

0
jg � 08j,

then one can use a stronger inequality as tests for
full n-partite entanglement in comparison with the rela-
tion (26).

In real experimental situations, we cannot claim that
fAj; A0

jg � 0 with arbitrary precision. The relevance of the
bounds claiming full n-partite entanglement assuming
that jhfAj; A

0
jgij � !, where ! means experimental errors,

would be worth further investigations.
In summary, we have derived the quadratic inequality

that is utilizable to test full n-partite entanglement not
only for qubit systems but also for higher dimensional
systems. This helps the analysis of experimental data in
realistic situations. We have also shown that when the two
measured observables are assumed to precisely anticom-
mute, we can use a stronger quadratic inequality as a
witness of full n-partite entanglement in correlation
experiments.
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