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Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media
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We study transmission at a boundary between a right-handed medium (RHM: € > 0, w > 0) and a
frequency dispersive left-handed medium [LHM: e(w) < 0, u(w) < 0 for some w], both homogeneous
and isotropic. In order to account for the dispersion, two types of signal spectra are considered. The first
consists of two discrete frequencies, while the second is Gaussian. Explicit expressions for the time-
domain fields are obtained, from which the time-averaged Poynting vectors and hence power flow
vectors are calculated. In both cases, we find that waves refract at negative angles at a RHM-LHM

interface.

DOI: 10.1103/PhysRevLett.89.257401

The study of left-handed media (LHM), first intro-
duced by Veselago in 1968 [1], has recently received
much attention in the literature, both from a theoretical
and an experimental point of view. Theoretically, such
materials have been predicted to have a number of unique
properties, including a negative index of refraction [2].
Although naturally occurring materials with simulta-
neously negative permittivity and permeability are not
known, one left-handed material has been artificially
realized as a periodic lattice of metallic rods and split-
ring resonators. Theoretically, the rods have been shown
to have an effective negative permittivity [3], while the
split-ring resonators have been shown to have an effective
negative permeability [4]. Experimentally, this metama-
terial has been built and measured to have a negative
index of refraction [5], consistent with theory [6]. Other
negative index materials studied recently include pho-
tonic crystal structures [7] and transmission line net-
works [8].

More recently though, all previous theoretical predic-
tions and experimental observations have been questioned
by Valanju et al [9], wherein the authors claim that the
presence of dispersion prevents power transmitted at a
RHM-LHM interface from refracting at a negative angle.
Valanju et al. draw their conclusions based solely on the
electric field inferring the direction of the power flow
from the normal of the phase front. However, the direc-
tion of power flow for both nondispersive and dispersive
media is determined by the Poynting vector, which is not
necessarily parallel to the normal of the phase front [10].
It is the purpose of this Letter to address this issue by
explicitly calculating the time and space dependent elec-
tric and magnetic fields due to a multifrequency incident
wave transmitted into a frequency dispersive LHM.
Indeed, from the resulting field expressions, the time-
averaged Poynting vector is calculated and shown to
refract at a negative angle, yet remaining causal.

In order to study the effect of dispersion on the direc-
tion of power propagation, we consider the transmission
of an incident field, composed of many frequencies, from
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an isotropic nondispersive region into an isotropic dis-
persive region as shown in Fig. 1. The total TE polarized
incident electric field is constructed as a weighted sum of
plane waves and is given by

EOy(f t) = f d(.oA(a))g"‘/’o(wa)—iwt’ (1)

where A(w) = a(w) + a*(—w) is the signal spectrum,
kx((()) = ko Sin@i, koz((U) = ko COSBi, ko = W./Mo€p, and
¢ (7, w) = k(w)x + k¢ (w)z, with € referring to region
0 or 1. With this formulation, the transmitted electric field
in region 1 is given by

Ely(7J t) = foo d(l.)A(Cl))T(a), Hi)eid’l(ﬁw)*iwz’ (2)

where T(w, 0;) is the frequency and angle dependent
transmission coefficient given by
21 ko,

Tw,§;) =—————,
ik, T poki;

3

and

k(o) = ool (e (0) - Bo), @)

where o = +1 for RHM and o = —1 for LHM. This
choice of sign ensures power propagates away from the
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FIG. 1. Half-space problem geometry: A TE polarized inci-
dent wave is transmitted from a nondispersive region (0) into a
dispersive region (1). Arrows shown here indicate power flow
direction.
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surface in the +Z direction rather than from infinity [11].
From the electric field, we can calculate the magnetic
field given by

H.(F, 1) = f ()

— 7 _A(w0)T(w, 0,)e!®1To)-iot
o wp(w)

(&)

where for brevity we list only H,_, noting that H,, can be
calculated in a similar manner.

In order to model a physically realizable narrow band
signal, we first consider an incident field composed of two
slightly separated frequencies with the following spec-
trum:

alw) = 2[ow — ) + o~ o)l (©)

where E| is the real-valued amplitude, w, — w; = dw,
and |dw/w,| < 1. From (2), we can find the expression

field,
E\(7, 1) = Eg[cosy + cosi], (7

where ¢; = b, (7, wj) — w;t, with j=1,2. Note that,
here we consider the lossless case and let T(w, 6,) = 1
for the simplicity of derivation. Later in this Letter we
will consider a more rigorous derivation that includes the
transmission coefficient. To proceed with the Poynting
vector calculation, we first determine the magnetic field,
which is given by

k(@) cosi
(o)

H (7, 1) = EO[ + k(w,) cosy, } ®

w1 (@))
where again for brevity we list only H . To find the power

flow direction, we calculate the time and space dependent
Poynting vector, given by S,(7, 1) = E (7, t) X H,(7, 1),

for the time and space dependent transmitted electric | yielding

kx(wl)
o py (o))

kx(wZ)

S (7 1) = E?
! 0 wypi(w))

cos’y; + EJ

cosyfr, + E%[

kx(wl)
oy (o)

kx(wZ)
w1 (@)

}coswl cosis, ®

where we note that a similar calculation for S, can also | yector. Clearly, in the case of the RHM-RHM interface,

be done. In order to determine the power propagation
direction, we calculate the time average value of the
time dependent Poynting vector by integrating (9) and a
similar expression for S, over a period T, which is chosen
to be the period of the combined signal, i.e., it is the
common period of the frequencies w; + w, and w; — w,.
Integrating, we find that the cross terms average to zero if
w| ¥ w, yielding

2
S, 0y =20

El(wl)
> [ (10)

ki(w,) }
wpy(w) '

wzﬂl(wz)

where k(w) = &k,(®) + 2k;.(»). From this expression,
we see that the power flow will be in the average direction
of the two single frequencies. Thus, depending on the
values of w(w), w(w,), €/(w,), and €,(w,) the wave
will refract at either a positive or a negative angle. In the
case that both the permittivities and permeabilities at
each frequency are negative, the wave will refract at a
negative angle.

We will now consider two specific simple examples.
The first example is the transmission of a wave with two
frequency components at f; = 10.5GHz and f, =
11.5 GHz (w = 27f) where we take the permittivity for
region 1 to be different for each frequency, yet both
positive, while the permeability remains fixed and posi-
tive such that in this example, both regions are RHM. The
second example is the case of transmission from a RHM
to a LHM where we again take the permittivity for
region 1 to be different for each frequency, yet both
negative, while the permeability remains fixed and nega-
tive. Figure 2 for the first example and Fig. 3 for the
second example show, at a specific time, the resulting %
component of the Poynting vector, overlayed with white
colored arrows that indicate the overall direction of the
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the X component of the Poynting vector is positive, while
in the RHM-LHM case the X component is negative.
Hence, as can be seen from the arrows, 6, > 0 for the
RHM-RHM interface and 6, <0 for the RHM-LHM
interface. Note that calculation of the Poynting vector
for subsequent times shows that the time-averaged S,
component is positive for the RHM-RHM case and nega-
tive for the RHM-LHM case, as predicted by (10).

Note, however, that in both cases an interference pat-
tern is formed whose normal vectors are not in the direc-
tion of the respective power flows. This interference is a
result of the fact that the waves for each frequency are
refracted at different angles. From the above calculations
we see that, contrary to the conclusions in [9], the normal
vectors of these interference fronts do not indicate the
power flow direction.

Next, in order to more rigorously model a physically
realizable narrow band signal, we consider an incident
field with a normalized Gaussian signal spectrum,

o) = Ey exp[— (0 — )
Var(dw)? (bw)?

where as before E is the real-valued amplitude, and
|dw/wgl << 1. The time-domain expressions for the
fields given in (2) and (5) involve the evaluation of
integrals that can be dealt with using a standard expan-
sion method. Note that, by conjugate symmetry, we need
only integrate the portion of the spectrum centered at w,.
A generic form of the integral is given by

I= foc dof(w)e”®) = foo does®), (12)

— 00

} (11

where g(w) = iy(w) + In[f(w)] and the principle branch
of the logarithm function is taken. To evaluate this
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FIG. 2 (color). RHM-RHM interface: S, component over-
layed with arrows indicating the direction and magnitude of
the Poynting vector at a specific time for a wave incident at
6; = 45° composed of two discrete frequencies, f; =
10.5 GHz and f, = 11.5 GHz with €. (w;) =2, €, (w;) =
1.5, and u,(w;) = wi,(@,) = 1. Ay corresponds to the wave-
length of the mean frequency.

integral, the argument to the exponential, g(w), is ex-
panded in a Taylor series about w to second order to yield

_ [z o F
=\ L Sy |

Note that, in the case of nondispersive media, the second
order Taylor series expansion is exact. For dispersive |
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FIG. 3 (color). RHM-LHM interface: Similar to Fig. 2 except
e (w)= =2, €,(wy) = —1.5,and p (@) = pj(wy) = —1.

media, this approximation holds as long as the signal
spectrum «a(w) spans only a linear portion of the dis-
persion curve, which is true outside the region of reso-
nance, under the condition |dw/w,y| < 1. Note that there
is no loss of generality by limiting the spectrum in this
manner since group velocity and power flow direction are
determined by considering the local slope of the disper-
sion curve [12].

In order to apply this method to determine the fields
in region 1, we specify definitions of g(w), depending on
the field component examined, e.g.,

0 — wg)?
gEly(a)) = - ((BT;)) + In[T(w)] + i[k(@)x + ki (0)z — wt], (14a)
_ (w B (1)0)2 kx(w) . _
gu,. (@) = “Ga)r + In[T(w)] + ln[(u,ul(w) }-ﬁ-t[kx(w)x + ki (w)z — wt]. (14b)

As an example, we consider the following dispersion
relations given by Shelby et al. [5]:

2 2
w Wy, — Wiy
(@) _ Oy~ o (152)
Mo W~ Wy, T iYW
w2 — w?
El(w) =1 > ep > eoh i (15b)
€o 0w —w,, tiyw

where ®,,, is the magnetic resonance frequency, w,,, is
the magnetic plasma frequency, w,, is the electric reso-
nance frequency, w,, is the electric plasma frequency,
and v is the loss factor. Explicit analytical expressions for
the electric and magnetic fields are derived from the use
of (13) and (14), but are not listed for the sake of brevity.

To proceed with a numerical evaluation of the electric
and magnetic fields, the parameters reported in [5] are
used, except with v = 0 in order to suppress losses for the
purpose of illustration. The incident wave is chosen to
have a Gaussian spectrum centered at f, = 10.5 GHz
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| with o0f = 10 Hz, and is incident at #; = 45°. From the
resulting time-domain electric and magnetic fields, the
Poynting vector is calculated. Figure 4 shows the S;, and
Si, components as a function of time for one typical
spatial point in the LHM region. The dot-dashed curve
shows that the X component of the power is indeed always
negative indicating a negative angle of refraction.
Specifically, this angle can be calculated by applying

<Slx(t)> i|
<S]z(t)> ’

In the example shown in Fig. 4, 6, is found to be approxi-
mately —11.12°. For comparison, note that at the center
frequency, €;,.(wg) = —12.88 and u;.(wy) = —1.04,
which corresponds to an index of refraction n(wg) =
—3.67 and a refraction angle of 6, = —11.12°. Hence,
comparing these two values we conclude that dispersion
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FIG. 4. S, and S, at one typical spatial point in the LHM
region as a function of time. Center frequency is f, =
10.5 GHz with 6f = 10 Hz. Parameters used were those re-
ported in [5], f,, = 10.95GHz, f,, = 10.05GHz, f,, =
12.8 GHz, f,, = 10.3 GHz, except y = 0. Refraction angle is
found to be 0, = —11.12°.

does not preclude refraction at a negative angle in accord-
ance with Snell’s law. It should be noted that the power
plotted in Fig. 4 is not strictly periodic since a continuum
of frequencies is used; however, this fact does not affect
the conclusion that the power is refracted at a negative
angle.

Additionally, it can be seen that negative refraction
does not violate causality. The argument presented in
[9] fails to consider two important points. First, at a
RHM-RHM interface, points on a single phase front in
the incident region can all be mapped to the same phase
front in the transmitted region; however, this is not the
case for a RHM-LHM interface. Instead, the points along
the incident phase fronts are each mapped to different
backward propagating phase fronts in the LHM. Second,
in the case of a single frequency signal, for which con-
stant phase front arguments apply, it is always possible
to form new backward propagating phase fronts due to
the negative phase property of LHM in conjunction with
the fact that the wave exists for all time and space.
Considering these two points, we see that waves
can refract at negative angles while maintaining a finite
velocity.

On the other hand, the interference fronts of a multi-
frequency signal are indeed distorted at a RHM-LHM
interface since its different frequency components are
refracted at different angles. In the case of two discrete
frequencies, examples of two distorted interference pat-
terns are shown in Figs. 2 and 3. Valanju ef al. argue that
these distorted interference patterns move and carry
power perpendicularly to the interference front, which
happens to be at a positive angle in the case considered in
Fig. 3. In actuality, each point on the interference front
moves in the direction of power flow (downward and to
the right in Fig. 3). The apparent upward movement is due
to the combined effects of semi-infinite extent, the perio-
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dicity of the interference pattern, and its slanted angle.
Indeed, a spatially finite extent signal such as a Gaussian
beam, which can be represented by a collection of plane
waves [13], will also propagate downwards in this case
since each plane wave component will refract negatively.
The combined effects listed above along with the exact
analytical calculation of the power flow presented in this
Letter demonstrate that conclusions based solely on the
apparent motion of the interference fronts are misguided.

In conclusion, we have calculated the power flow of a
wave transmitted from a nondispersive right-handed
medium into a dispersive medium, both RHM and
LHM. In particular, we have shown that negative refrac-
tion is possible for multifrequency signals by explicit
calculation of the Poynting vector in LHM. Using two
discrete frequencies, we have shown that the direction of
the time-averaged Poynting vector is in the average
direction of the time-averaged Poynting vectors for
each frequency treated separately, implying that negative
refraction is possible. Using a Gaussian signal spectrum,
we have confirmed this conclusion after also determining
the power refraction angle to be negative, without violat-
ing causality. The angle of refraction was found to be in
agreement with that predicted by Snell’s law, with the
LHM having a negative index of refraction.
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