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From Dislocation Junctions to Forest Hardening
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The mechanisms of dislocation intersection and strain hardening in fcc crystals are examined with
emphasis on the process of junction formation and destruction. Large-scale 3D simulations of
dislocation dynamics were performed yielding access for the first time to statistically averaged
quantities. These simulations provide a parameter-free estimate of the dislocation microstructure
strength and of its scaling law. It is shown that forest hardening is dominated by short-range elastic
processes and is insensitive to the detail of the dislocation core structure.
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The more a crystal is deformed plastically, the larger is
the stress needed to further deform it. This property,
which ensures the stability of plastic flow, is called strain
hardening. Its physical origin is understood in terms of
dislocations, the linear defects that carry plastic flow in
crystals. When two attractive dislocations gliding in dif-
ferent slip planes cross each other, they can reduce their
total energy by reacting to form a third dislocation seg-
ment called a junction. This junction lies at the intersec-
tion of the two dislocation slip planes. It is usually not
mobile and therefore represents a barrier to further dis-
location motion, until the local stress is raised to a critical
value such that the junction is destroyed and dislocation
crossing occurs. During plastic deformation, the disloca-
tion density increases and, as a result, the number of such
events continuously increases, thus leading to strain hard-
ening through a mechanism called forest hardening.

The objective of the present study is to establish a
rigorous connection between the individual configura-
tions of dislocation intersections and their macroscopic
average strength in fcc crystals and therefore to improve
the physical content of current models for strain harden-
ing. For this purpose, use is made of a mesoscale simu-
lation of dislocation dynamics (DD). The elementary
configurations of two intersecting dislocations have been
systematically studied in order to check that their indi-
vidual contributions to hardening are properly accounted
for in the present numerical model. Large-scale 3D simu-
lations of forest hardening in fcc crystals are then pre-
sented, leading for the first time to a parameter-free
computation of the relation between flow stress and dis-
location density. The obtained scaling relation is com-
pared to experimental data and its consequences are
discussed.

The calculation of the energy of isolated junction con-
figurations is a very complex problem [1]. In early studies
it was performed using elasticity theory with strong
simplifications [2,3]. More recently, a few junction con-
figurations have been studied more precisely by atomistic
[4,5] and mesoscopic simulations [6,7]. It was confirmed
that the contribution of the dislocation core regions to
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junction stability is negligible compared to the elastic
contribution from regions outside the core. For instance,
it was shown that the perfect Lomer lock and the Lomer-
Cottrell lock, where the core energy is reduced by
dissociation and reaction of partial dislocations, have
practically the same critical stress for destruction [8].
Within the forest model [2], the critical resolved stress
T to destroy a junction and remobilize the dislocation
lines is proportional to wb/I, where w is the shear modu-
lus, b is the modulus of the Burgers vector of the mobile
dislocations, and / is the distance between the intersecting
obstacles along the dislocation line. The average value of
this distance scales as 1/ \/Ps» where p; is the density of
forest obstacles. This leads to a well-known relationship:

7/ = ab fp;, (1)

where the constant « is an average value of the junctions
strength over all existing configurations.

A major difficulty arises when performing this aver-
age, because of the wide spectrum of possible dislocation
reactions [3]. Nevertheless, Eq. (1) is commonly verified
by experiment. In fcc crystals, both theoretical [2,3] and
experimental estimates [9,10] exist and they suggest o =
0.35 = 0.15 (cf. the review [11]).

The constitutive rules of three-dimensional DD simu-
lations have been discussed in several papers [12—-14] (see
also [15] for full details on the present simulation). Thus,
for the present purpose, only a few relevant methodologi-
cal aspects require a specific discussion. In each slip
system, the continuous shapes of the dislocation lines
are discretized into a finite number of segment directions:
screw, edge, or mixed (i.e., making angles of *7/3 and
+277/3 with the direction of the Burgers vector). This
allows us to simplify the treatment of all junction seg-
ments, whose line directions at the intersection of two
(111) glide planes are of either mixed or edge character.
Only a/2(110){111} slip systems are explicitly accounted
for (a is the lattice parameter). Additional Burgers vec-
tors of perfect dislocations are obtained by linear combi-
nation. For instance, a particular junction, the Hirth lock,
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is reproduced by superimposing segments with different
Burgers vectors according to the reaction a/2[110] +
a/2[110] = a[010]. As mentioned above, the dissociation
of the dislocations is a core effect that needs not to be
considered here. The same holds for the atomic jogs
formed at the lines’ intersection, as they induce a negli-
gible resistance to dislocation motion [16]. The cross slip
of screw dislocations is another important core mecha-
nism that depends sensitively on the dissociation width of
dislocations. As will be discussed below, cross slip does
not appear, however, to significantly affect the intersec-
tion mechanisms. Thus, we focus here on the results
obtained in conditions such that cross slip is deactivated
in the simulations. The forest model is then investigated
in a linear elastic and athermal (i.e., strain-rate indepen-
dent) framework that does not involve any adjustable
parameter.

The resolved effective force per unit length on a seg-
ment is the sum of the Peach-Koehler force and of a local
line tension term balancing effects of the dislocation
discretization [1]. The Peach-Koehler term accounts for
the effect of the external loading and of the field of the
embedding dislocation microstructure. The steady state
dislocation velocity is governed by viscous drag on elec-
tron and phonons. It is of the form v = 7*b/B, where 7*b
is the effective force and 7* is the corresponding effective
stress. B is a viscous drag constant (B = 5 X 107> Pas in
copper at room temperature). The model material inves-
tigated here is copper, with isotropic elastic constants
pm =42 GPa, v = 0.33, and a = 0.361 nm. The present
results can be extended to any other fcc crystal by appro-
priately modifying these three material constants.

Before going to large-scale simulations, one must ver-
ify that the properties of elementary configurations are
well reproduced by the simulations. This is why the three
possible types of junctions, namely, the Lomer, Hirth,
and glissile junctions, have been examined in detail. We
focus here on the Lomer lock, as some of its configura-
tions have already been examined [5,7,8]. The two inter-
acting slip systems are a/2[101](111) and a/2[011](111).
The tested configurations consist of two initially straight
lines, pinned at their ends, of length /, = 30 wm, which
intersect at their midpoint. The lines initially make two
angles ¢, and ¢,, respectively, with the direction of the
incipient junction. They are allowed to relax, in the
absence of applied forces and under the influence of their
interaction forces, until they reach a stable configuration.
Three situations can occur. If the lines are attractive, they
either zip a junction or, when junction formation is ener-
getically unfavorable, they mutually pin each other at
their intersection point. This last configuration is called
a crossed state [6]. If the lines are repulsive, they move
apart from each other.

Figure 1 shows a three-dimensional plot of the length
of the Lomer lock as a function of the initial orientation
of the interacting lines denoted by the angles ¢ and ¢.
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FIG. 1. Three-dimensional plot of the reduced length of the
Lomer locks ;/1, obtained at the intersection of the two slip
systems a/2[101](111) and @/2[011](111). ¢, and ¢, are the
initial directions of the lines with respect to the intersection of
the two slip planes. Each node corresponds to a simulation
result. The domain of junction formation consists of a periodic
array of closed domains, with maximum junction length
(lj/l,, = 1) when the attractive lines are parallel. The regions
where [; = 0 correspond to either repulsive interactions or
crossed states.

Junction formation is obtained in a periodic array of
closed domains. Outside these domains, one finds another
attractive region with crossed states and a region of
repulsive states. The boundaries between these different
types of final configurations were calculated using sim-
plified elastic models, similar to those used in previous
studies [2,3,6]. These calculations are not detailed here
for the sake of brevity.

As illustrated by Fig. 1, the strength of junctions, which
is inversely proportional to their length and to the lengths
of the initial dislocations, critically depends on the angles
¢, and ¢,. For the Lomer lock, it was verified that
the simulated junction lengths and critical destruction
stresses are the same as those previously found by other
authors in the particular case ¢; = ¢, [5,7]. Even with
the simplified geometry used here, averaging the junction
strength for all values of the angles (¢, ¢,) involves
many uncertainties. Indeed, under stress, the weakest
junctions are destroyed in such a way as to provide the
crystal with a sufficient density of mobile dislocations
[17]. The remaining junctions have a spectrum of
strengths and each strength has its own probability of
occurrence. This is why only large-scale simulations can
effectively integrate the contributions to the flow stress
resulting from all the possible configurations of intersect-
ing dislocations.

Large-scale simulations were carried out with several
initial dislocation densities, p;, in the range from 10'° to
10" m~2. These densities consisted of dislocation
sources distributed at random over the 12 possible slip
systems of the fcc structure. After full discretization and
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relaxation, an initial microstructure with a density
smaller than p; was obtained. A constant total strain
rate was imposed along a high symmetry [001] axis.
For each density, the dimension of the simulated volume,
the average length of the source segments, and the strain
rate were chosen according to simple scaling laws. To fix
ideas, with an initial dislocation density p; = 1.5 X
10" m~2, a simulation cell of 26.9 X 31.6 X 38.9 um?
was used, with a strain rate € = 2 s 1. Following the
work of Bulatov [18], periodic boundary conditions
were used in order to ensure that the dislocation densities
are not affected by image forces or dislocation flux un-
balance at the boundaries of the simulation cell. These
conditions, although extremely useful, have to be handled
with care. For instance, the incommensurate dimensions
of the simulated volume are intended to limit spurious
spatial correlations between the active slip planes [15].
The simulations were stopped once stable plastic flow
was reached after the yield stress, which corresponded to
plastic strains in the range of 1074-2.0 X 1073. At this
point of the stress-strain curve, the average distance
between dislocations, pt_1 2, where p, is the total dislo-
cation density, is at least 15 times smaller than the initial
source length. This ensures that plasticity is governed by
forest interactions and not by dislocation multiplication,
as should be the case in typical laboratory tests. Figure 2
shows a typical dislocation microstructure obtained in
such conditions for an initial density of 10'> m~2. More
detail about the stress-strain curve, dislocation micro-
structure, and internal stresses can be found in [17].
With a [001] stress axis, four slip systems have zero
Schmid factors and are inactive, whereas eight slip sys-
tems are active with the same Schmid factor. To obtain the
effective density of forest dislocations in each active slip
system, p ¢, one has to subtract from p, the density of the
system considered and those of its two coplanar systems.
In the present case, symmetry imposes p, = 3p,/4. For
each simulation, the flow stress and the final dislocation

FIG. 2. The cell of the DD simulation and a dislocation
microstructure at a plastic strain of 2.0 X 1073,
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densities were measured at the maximum strain reached
by the simulation.

The simulation results are shown in Fig. 3. These
results are subject to two causes of uncertainty. One arises
from fluctuations on the simulated stress-strain curves,
which are inherent to the small volumes investigated and
the other from the statistical influence of the initial con-
figurations. The resulting relative error is always within
*5%. For comparison, we reproduce in Fig. 3 a compila-
tion of experimental data on Cu and Ag [9] and more
recent experimental results on pure Al [19].

For densities in the range of 10'> m~2, where many
measurements have been performed, the simulation yields
the currently quoted value @ = 0.35. Considering, how-
ever, the whole range of numerical data, one can see from
Fig. 3 that the average slope is not fully consistent with
the square root relationship predicted by Eq. (1). In fact, «
substantially decreases with increasing forest density,
from about 0.5 to about 0.2. This discrepancy has already
been mentioned by Basinski and Basinski [9]. Indeed,
Eq. (1) makes use of a simplified form for the line
tension, which omits a logarithmic term including an
inner core radius (=b) and an outer cutoff radius
(= 1/\/p_f) taking into account self-screening due to
line curvature [9,11]. Upon reintroducing this contribu-
tion, which is accounted for in the simulations, Eq. (1)
becomes

7/u = kin(p;'/b)b. /57, )
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FIG. 3. Logarithmic plot of the forest dislocation density, p ,
vs the corresponding flow stress 7. X: simulation results,
regression line in grey. +: rescaled experimental results on
aluminum after [19]. Small symbols: experimental results on
Cu and Ag, after [9]. The two thin lines are plots of Eq. (1) with
a = 0.2 and 0.5.
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where k is a constant that again represents the average
strength of the forest. Equation (2), with k = 0.1, per-
fectly fits the present numerical data. The simulated re-
sults globally fall in the left region of the cloud of earlier
data, which corresponds to the cleanest experiments.
Equation (2) is also fully consistent with the more recent
experimental results at high densities [10,19]. This gives
confidence that no contribution to forest hardening that is
accessible to experiment is missing in the simulation.

The present results apply to all pure fcc crystals, as
illustrated by Fig. 3 in the cases of Cu, Al, and Ag. For
instance, it was noticed long ago [9] that in all pure fcc
crystals, the athermal deformation stage (stage II), which
is governed by forest intersections, exhibits an almost
constant strain hardening coefficient of about u/250.

In multislip conditions, such as the ones used in the
present study, dislocation cross slip and dynamic recovery
come into play. The scaling law of the forest mechanism
[Eq. (2)] nevertheless holds all through the range of
dislocation densities, stresses, and strains which has
been experimentally investigated. As a matter of fact, at
large stresses, Fig. 3 includes both results from poorly
organized simulated microstructures and experimental
data obtained in conditions where well-formed disloca-
tions cells are necessarily present. The fact that disloca-
tion patterning does not influence notably the value of «
has puzzled many authors (see, e.g., [9,10]). Cross slip
influences the dislocation density evolution and is respon-
sible for the formation of dislocation patterns. Thus,
simulations were carried out in the same conditions as
above but taking cross slip into account. In agreement
with expectation, heterogeneous microstructures are then
formed [17], but the forest constant increases from
k=10.1 to k=0.109 only. A tentative explanation for
this paradoxical behavior was proposed by Neuhaus and
Schwink [10]. Self-organized dislocation microstructures
are arranged according to scaling laws such that their
flow stress is almost independent of the degree of hetero-
geneity. It appears now that simulation methods may be of
some help in clarifying this question.

Finally, one must notice that the flow stress given by
Eq. (2) contains a specific signature of local line curva-
tures, the logarithmic term. Indeed, the Peach-Koehler
forces/stresses induced on the intersecting lines by other
loops do not include logarithmic terms whatever the
spatial arrangement of the microstructure. Thus, the
flow stress of fcc crystals deformed in the multislip con-
dition is dominated by short-range interactions and con-
tact reactions.

In summary, the forest mechanism has been repro-
duced numerically within an elastic framework that in-
volves no adjustable parameter. The present results
consistently show that no core effects appear for fcc
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crystals when cross slip and climb are suppressed. These
results clearly show that DD simulations provide an effi-
cient solution to the problem of averaging the extended
spectrum of dislocation interactions during plastic defor-
mation. Thus, a robust connection is established for the
first time between the local properties of junction configu-
rations and the resulting flow stress of the bulk material.
In parallel, this approach allows one to examine micro-
structural evolutions under stress. This opens the way for
novel types of studies in which, for instance, the global
material hardening could be decomposed into a set of
contributions stemming from pair interactions between
the various slip systems.
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