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Strength and Elasticity of SiO2 across the Stishovite–CaCl2-type Structural Phase Boundary
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Radial x-ray diffraction experiments were conducted under nonhydrostatic compression on SiO2 to
60 GPa in a diamond anvil cell. This ratio of differential stress to shear modulus t=G is 0.019(3)–
0.037(5) at P � 15–60 GPa. The ratio for octahedrally coordinated stishovite is lower by a factor of
about 2 than observed in four-coordinated silicates. Using a theoretical model for the shear modulus,
the differential stress of stishovite is found to be 4.5(1.5) GPa below 40 GPa and to decrease sharply as
the stishovite–CaCl2-type phase transition boundary is approached. Inversion of measured lattice
strains provides direct experimental evidence for softening of C11-C12.
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Pressure Laboratory. X-ray diffraction revealed the ma-
terial to be pure stishovite with no detectable impurities. dm�hkl� � dp�hkl�	1
 �1� 3 cos2 �Q�hkl��; (1)
The properties of stishovite, the octahedrally coordi-
nated polymorph of silica in the rutile structure, are of
broad interest [1]. Stishovite has been observed naturally
in meteorites [2], and its presence in the deep Earth is
inferred from associations in diamond inclusions [3]. It
may contribute to unexplained seismic structure in the
Earth’s mantle [4]. More generally, it is regarded as a
prototype for the six-coordinated silicates that are of fun-
damental importance in solid-state physics, chemistry,
and geophysics [5]. The extensive polymorphism in dense
silica is an area of particular focus [1,6,7]. Stishovite is
known to transform to an orthorhombic CaCl2-type struc-
ture at 50� 3 GPa on the basis of theoretical calculations
[8–11], Raman spectroscopy [12], and x-ray diffraction
studies [13,14]. The study of elastic instabilities is im-
portant for understanding phase transformations, and the
stishovite–CaCl2-type transition, which is driven by an
instability of an elastic shear modulus, has attracted
much attention in this regard [8,12].

Polycrystalline stishovite is also among the strongest
known oxides [15], and understanding its elastic and
rheological properties is fundamental to the search for
new superhard materials [16,17]. As the strength, equa-
tion of state, and refractory properties are expected to
vary with coordination number in the silica system (e.g.,
[18]), investigation of the high-pressure polymorphs is
especially important. At present, direct experimental
measurements of the elastic properties, strength, and
plastic deformation behavior of stishovite at high pres-
sures are limited [19,20]. In this study, we use lattice
strain measurements under nonhydrostatic compression
in a diamond anvil cell [21–24] to examine dense SiO2

over a broad pressure range.
The sample was synthesized in the 2000-ton uniaxial

split-sphere apparatus at the SUNY Stony Brook High-
0031-9007=02=89(25)=255507(4)$20.00
The sample was ground into fine powder (�1 �m) and
loaded into a 90-�m diam hole of a Be gasket that was
preindented to 20–30 �m thickness. A 10–15 �m foil of
Au was placed on top within �5 �m of the sample center.
This foil served as both a pressure marker [23] and as a
reference for the x-ray position. A diamond anvil cell was
used to compress the sample under intentionally nonhy-
drostatic conditions (i.e., no pressure transmitting me-
dium). Radial x-ray diffraction experiments [21–24]
were performed at the X17C beam line of the National
Synchrotron Light Source. The incident x-ray beam was
focused by a pair of Kirkpatrick-Baez mirrors to approxi-
mately 10� 15 �m and directed through the Be gasket
and the sample. At each loading step, a series of diffrac-
tion patterns was obtained by rotating the diamond cell
about an axis that bisects 2�, the angle between the
incident x-ray beam and the detector. This allows for
measurement of lattice strain at any angle with respect
to the loading axis. Experiments were performed using
energy dispersive x-ray diffraction and a solid-state Ge
detector fixed at 2� � 12�. The collecting time was 5–
30 min for each spectrum. Spectra were collected only
after sufficient time elapsed after pressurization (typi-
cally 1–2 h) such that stress relaxation was observed to be
negligible.

The data were analyzed using lattice strain theory
[21–24], which relates the anisotropy of the measured
lattice strains to the supported differential stress and the
elastic stiffness coefficients. The stress tensor in a dia-
mond cell under nonhydrostatic loading can be charac-
terized by the stress along the diamond cell axis, �3, and
the radial stress, �1. The differential stress, t, is given by
�3 � �1. The supported differential stress is a lower
bound to the yield strength. The measured d spacing is
given by [21,22]
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where dm�hkl� is the measured interplanar spacing for
plane �hkl�, dp�hkl� is the d spacing resulting from the
hydrostatic component of stress,  is the angle between
the diffracting plane normal and the loading direction,
and

Q�hkl� � �t=3�f�	2GX
R�hkl��

�1 
 �1� ���2GV�
�1g: (2)

GX
R�hkl� is the x-ray shear modulus under the Reuss (iso-

stress) condition and GV is the shear modulus under Voigt
(isostrain) conditions. The parameter �, which can vary
between 0 and 1, is the weighting factor for the relative
degree of stress and strain continuity across grain bounda-
ries. We assumed that the sample here was under isostress
(Reuss) conditions.We note that the measured d spacing is
equivalent to the d spacing under hydrostatic stress when
1� 3 cos2 � 0 or  � 54:7�. The differential stress can
be estimated from the shear modulus and the average
Q�hkl� value from all measured reflections by [21,22]

t � 6GhQ�hkl�i: (3)

The diffraction patterns (Fig. 1) obtained at  � 0�

and 90� describe the maximum and minimum strain in
the sample. The peaks shift to lower energies as the angle
from the loading axis increases. As expected, the d spac-
ings increase linearly with 1� 3 cos2 .

By assuming that the measured d spacings correspond
to volume compression under hydrostatic stress, data at
 � 0�, 54.7�, and 90� can be compared with previous
equation of state data under quasihydrostatic [1,13,25,26]
and nonhydrostatic [6] conditions (Fig. 2). The equation
of state at 54.7� generally agrees with previous quasihy-
drostatic measurements [1,13,25,26], but appears slightly
less compressible than the measurements of Hemley et al.
[1] above 30 GPa. Fitting the 54.7� data below 50 GPa to a
Birch-Manurghan equation of state yields a pressure de-
rivative of the bulk modulus, K0

0, of 4.6(1) when the bulk
modulus, K0, is fixed at 304 GPa [25]. This pressure
derivative is intermediate to previous values from com-
pression using a He medium (K0

0 � 3:98) [1], ultrasonic
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FIG. 1. Energy dispersive x-ray diffraction spectra at maxi-
mum strain ( � 0�) and minimum strain ( � 90�).
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elasticity (K0
0 � 5:1) [25], and direct shock compression

of stishovite (K0
0 � 5:0) [27], and in good agreement with

very recent measurements from quenched laser heated
samples [K0

0 � 4:8�2�] [26]. As expected, the equation
of state at 90� agrees with previous nonhydrostatic com-
pression data [6] since conventional axial x-ray diffrac-
tion experiments are performed near this angle. These
results show that the inferred compression curve is
strongly sensitive to orientation with respect to the load-
ing axis.

Many studies of superhard solids have focused on the
more easily measured aggregate elastic properties (e.g.,
the bulk modulus or, less frequently, the shear modulus)
as a proxy for strength [16,17] as the elastic properties are
a reflection of bond strength and directionality. However,
elastic properties alone are insufficient for complete char-
acterization as shear strength can vary by more than a
factor of 10 for materials with comparable shear moduli
[16,17]. The hardness may also vary dramatically for ma-
terials with similar bulk moduli [16]. A more useful
parameter is the ratio of shear strength, �, to shear
modulus, G, which reflects the contributions of both
plastic and elastic deformation. Theoretical studies of
ideal strengths of solids are typically expressed in terms
of �=G, with values ranging from 0.03–0.04 for fcc
metals to values as large as 0.25 for covalently bonded
materials [17,28]. In this study, we examine the ratio of
t=G, where we expect that at high pressures t has reached
its limiting value of 2�. This ratio can be directly ob-
tained from the average slope of the d spacing vs 1�
3 cos2 relation.

For SiO2, we find that t=G varies from 0.019(3) to
0.037(5) in the pressure range of 15–60 GPa (Fig. 3).
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FIG. 2. Equation of state at  � 0�, 54.7� and 90�. Solid
symbols are from this study. Open squares are from Ref. [6]
and open triangles are from Refs. [1,14]. The solid line is a fit to
our data at  � 54:7� using the Birch-Murnaghan equation of
state. Error bars are smaller than symbols where not shown .
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FIG. 3. Ratio of differential stress to shear modulus as a
function of pressure. Solid circles denote data from this study.
Open squares are from Ref. [29]. Open diamonds are from
Ref. [24]. The upward and downward pointing triangles are
calculated from the data of Ref. [9] and Ref. [10], respectively
(see text for detail).
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FIG. 4. Differential stress supported by stishovite as a func-
tion of pressure. Solid symbols are from this study with a fit to
the data shown by the solid line. Open squares and diamonds
are from Ref. [29] and Ref. [24], respectively.
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Despite the increase with pressure, t=G values still lie
well below the expected ideal strength for strong brittle
solids [28]. There is no observable change in t=G across
the expected pressure of the stishovite–CaCl2-type phase
transformation (�50 GPa). Surprisingly, the ratio of dif-
ferential stress to shear modulus for stishovite is about
one-half the value found for olivine (�-Mg2SiO4) [29]
and ringwoodite (�-Mg2SiO4) [24] at pressures below
30 GPa (Fig. 3). That is, as a fraction of the shear modu-
lus, the differential stress supported by stishovite is sig-
nificantly less than that of four-coordinated silicates for
which t=G values of 0.03–0.07 have been observed [24].
The enhanced hardness of six-coordinate silicates [17],
therefore, must primarily reflect the increase in elastic
properties across the transition.

In order to quantify the differential stress, it is neces-
sary to estimate the shear modulus. Shear moduli of
stishovite have been reported from ultrasonic experi-
ments on polycrystalline aggregates to 10 GPa [19,25]
and by theoretical calculations [8,9]. Density functional
theory calculations [8,9] show that the elastic moduli
C11-C12 and, consequently, the Reuss bound shear modu-
lus of stishovite decreases rapidly above 40 GPa and
vanishes at approximately 47 GPa. This is the manifesta-
tion of the tetragonal shear instability responsible for the
softening of the B1g Raman mode [12] and the transition
to the orthorhombic CaCl2-type phase [8]. Similar results
for the elastic moduli have also been reported from a
Landau analysis [10,14] based on a theoretical study [9].

Figure 4 shows the differential stress obtained using
the Reuss bound on the shear modulus from the Landau
analysis [10]. The differential stress is found to be nearly
constant or weakly increasing at pressures of 15–40 GPa
255507-3
and to drop sharply as the transition pressure is ap-
proached. The differential stress then recovers rapidly to
values of 5� 2 GPa at 52–55 GPa in the CaCl2-type
phase. Figure 4 also shows that the differential stresses
supported by stishovite are significantly lower than those
of ringwoodite. This finding is consistent with measure-
ments on SiO2 glass [18] which show a large reduction in
strength as the coordination in the glass increases from
fourfold to sixfold during compression. Our results are
insensitive to the choice of theoretical model [8–10] for
the shear moduli. Using the pressure dependent elastic
moduli of Ref. [11] and the expressions for GX

R�hkl� in the
tetragonal system [22], the predicted values ofQ�hkl� (for
t � 2:5–4:5 GPa and � � 1) are shown in Fig. 3 (open
triangles). Similar results are obtained using the moduli
of Ref. [10]. These results show that our lattice strain
observations are fully consistent with the elasticity values
reported in the theoretical studies.

Application of the lattice strain equations has also been
used to directly recover the full elastic stiffness tensor at
high pressures for materials in the cubic and hexagonal
systems [21–24]. Stishovite crystallizes in the tetragonal
system (class 4=mmm) and thus has six independent
elastic stiffnesses (C11, C12, C13, C33, C44, C66). The
combination of lattice strain equations [21] for four in-
dependent lattice reflections together with expressions for
the compressibility and the pressure dependence of the
c=a ratio are, in principle, sufficient for recovery of the
full elastic tensor. Our inversions on simulated data sets
revealed that the lattice strain equations are largely in-
sensitive to C44 and C66; hence, these parameters were
fixed to theoretical values [9]. We then inverted for the
remaining moduli using the (110) and (211) reflections
together with the following expressions:
255507-3
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1=K � 2S11 
 2S12 
 4S13 
 S33; (4)

d ln�c=a�=dP � S11 
 S12 � S13 � S33; (5)

where K is the bulk modulus, a and c are the lattice
parameters, and the Sijs are the elastic compliances.

The values for C11 and C12 are illustrated in Fig. 5,
together with theoretical results [8–10]. In general, our
values of C11 and C12 lie below the theoretical studies, but
our results are qualitatively consistent with the theoreti-
cal studies in that C11-C12 is markedly reduced near the
phase transition pressure. This result is largely insensitive
to the choice of a wide range of t values and shear
modulus models. This provides direct experimental sup-
port for an elastic instability involving C11-C12 in stisho-
vite near 50 GPa.
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