
VOLUME 89, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 16 DECEMBER 2002
Sandpiles with Bistable Automata Rules: Towards a Minimal Model
of Pedestal Formation and Structure
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A sandpile with two stable and two unstable ranges of slopes is presented as a minimal model for the
study of H-mode pedestal formation and dynamics. Pedestals are observed to form and expand inward
with increasing deposition. Transport bifurcation is not critical to pedestal formation, though the
pedestal structure obtained with a second, hard stability boundary is qualitatively different from that
found in standard sandpiles. Nonperiodic particle ejection events are observed, but do not initiate
pedestal collapse. Pedestal formation alters the spectrum of transport avalanches.
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loosely corresponds to the ultimate MHD stability limit
on the pedestal gradient. Grain deposition is random and

profile stability limit. Indeed, the tendency of the sandpile
slope to develop a supercritical gradient at the edge,
One of the most critical problems in fusion plasma
physics is that of quantitatively understanding the struc-
ture of the H-mode [1] pedestal [2–4], a region of very
steep profile gradients which forms at the plasma periph-
ery after the L ! H transition, when edge plasma tur-
bulence is extinguished or drastically quenched. Since
the pedestal temperature, determined by the product of
the pedestal width and the pedestal slope, constitutes the
‘‘outer’’ boundary condition onto which the core profile
must match, it is not surprising that the performance of
tokamaks is very sensitive to the pedestal width [5]. This
sensitivity is due in a large part to the facts that core ion
temperature gradient turbulence is intrinsically stiff, thus
tending to hover near marginal stability, and that the
pedestal slope is constrained by relatively simple MHD
stability considerations [6]. The major unknown is thus
the pedestal width, which is determined by a complex
interplay of turbulence and L ! H transition dynamics,
MHD stability limits, fueling profiles, and neoclassical
transport processes. The usual approach to the pedestal
width problem makes use of ad hoc considerations of
parametric scaling in light of ‘‘typical’’ relevant lengths,
such as the gyroradius or turbulence correlation length,
neutral fueling length or poloidal gyroradius, etc.

In this paper, we report on studies of pedestal forma-
tion in a bistable sandpile — perhaps the simplest, most
minimalistic model of this process. This simple model
facilitates progress and allows insights not possible with
more complete but vastly more complex models.
However, we emphasize that our model is not yet capable
of predictive quantitative modeling of pedestal phenom-
ena. The model incorporates a toppling rule with a local
gradient threshold and a second range of stability for
gradients exceeding a second (larger) critical gradient.
This second range loosely corresponds to the regime of
diamagnetic electric field shear suppression of turbu-
lence, characteristic of the H mode [7–9]. A second,
hard stability boundary is set at a still larger slope, and
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uniform. Obviously, grains should be thought of as units
of density, so that the pedestal formation process studied
here is somewhat like the pellet-induced H mode [10],
which is triggered by internal particle deposition that
increases the diamagnetic electric field shear.

A brief description of the model follows. The local
slope Zl defined as Zl � hl � hl�1, where hl is the lth
cell’s height, is stable when Zl < Zc1 or Zc2 < Zl < Zc3. If
the local slope is in the first unstable range, i.e., Zc1 �
Zl � Zc2, a fixed number of grains Dz � 3 is flipped from
the unstable cell to the next one downhill, as in the
standard sandpile models [11,12]. The rule for relaxation
is different for the second instability, Zc3 � Zl: we topple
as many grains as needed to relax Zl to a subcritical value
Zc1 � 1. This flexibility in the size of a flip allows trans-
port of all deposited sand to the edge without accumu-
lation. The sandpile is L � 100 cells wide and constants
Zc1, Zc2, and Zc3 are chosen to be 8, 20, and 30. As
mentioned, the deposition is random and uniform. We
start simulations from a flat sandpile. At each cycle, we
add some sand at random cells, one grain per cell, and
make a few iterations, defined by the deposition rate, Nf,
which represents fueling or another driving mechanism
(source of perturbation). (For example, if we are to
simulate Nf � 5=2, we drop five grains and make two
iterations during one cycle. Similarly, if Nf � 3, we
deposit three grains and make one iteration per cycle,
etc.) During an iteration, we check the slope for stability
and update unstable cells once. It is important to note here
that updating an unstable cell l means transporting a
certain amount of sand to cell l� 1, which might make
cells l� 1 or l� 1 unstable. Thus, at the end of a cycle
some cells can be left unstable, and on the next cycle, new
sand is added, etc. This algorithm accounts for a finite
time of relaxation or mixing [13], and allows an interplay
between deposited and transported fluxes. The sandpile
can become supercritical, especially near the edge, can
undergo transport bifurcation, and then can approach the
2002 The American Physical Society 255001-1



VOLUME 89, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 16 DECEMBER 2002
where the radial transport is also maximal, is well known
even for uni stable models [14]. This is analogous to the
tendency of the L ! H transition to occur at the bound-
ary, as pretransition profile steepening, which is neces-
sary for a transport bifurcation, is most pronounced there.
The sandpile takes approximately 100 000 iterations to
reach its critical state. Then we run another 900 000
iterations in order to accumulate good statistics.

When deposition Nf exceeds the value that can be
transported by a simple toppling Dz, the profile neces-
sarily becomes steeper and steeper near the edge until the
second, ‘‘hard’’ instability comes into play and a steady
state is reached. The region of steepening of the profile is
clearly bounded by a discontinuity in slope (Fig. 1). We
call the region of steep profile a pedestal for two reasons.
First, because it is intrinsically different from the edge
steepening of the standard unistable sandpile models: in
the latter case the slope near the edge is supercritical (i.e.,
unstable), while in our bistable model the time-averaged
slope in the pedestal is stable with respect to the ‘‘MHD’’
instability which provides the transport in the pedestal,
as will be shown below. Second, the pedestal region is
bounded by a definite discontinuity in profile slope. An
important observation here is that slope in the pedestal is
independent of deposition (see Fig. 1).

The pedestal expands inward with increasing deposi-
tion. The steady-state widths for different deposition rates
are shown in Fig. 2. For a fixed Nf, the width fluctuates
about average value with no characteristic frequency. The
width distribution is approximately Gaussian, with a
variance slightly decreasing with width.

In simulations, we also found that the width and slope
of the pedestal are essentially insensitive to the bifurca-
tion threshold Zc2. Thus, the steady-state pedestal is con-
trolled by the hard MHD stability limit Zc3 only. Indeed,
the pedestal is observed to form even when Zc2 � Zc3,
i.e., without suppression of first instability.

In Fig. 3, time sequences of slopes just before and
immediately after the transition show the effect of the
pedestal. The left panel is for the threshold deposition
rate, Nf � 3. In this case, the steady-state sandpile ar-
FIG. 1. Steady-state profiles for deposition rates Nf �
1; 2; 3; 4; 5, and 6. Observe the appearance of a steep gradient
as Nf exceeds a critical value.
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ranges itself in the way that the last cell is always unstable
and topples, thus maintaining a constant (3 grains per
iteration) flux through the edge. Observe that transport
bifurcation never occurs.

The right panel of Fig. 3 is for the deposition rate Nf �
10=3. Though the deposition is only slightly above the
threshold, one sees the drastic changes in the dynamics of
flux through the edge. It is not constant anymore, but is
time intermittent with quiescent periods 2–20 iterations,
and in rare cases as long as 60 iterations, with the average
size of toppling being 12 grains (this toppling size is
typical for the hard instability). The time-average flux
through the edge is, of course, equal to the deposition
rate. Usually, the avalanches started at the core are termi-
nated at the pedestal shoulder, and transport through the
edge is carried by second, MHD instability. In other
words, the edge transport events usually do not destroy
the pedestal. This is in distinct contrast to ‘‘giant’’ edge
localized mode (ELM) phenomena. Pedestal destruction
by a series of avalanches is a very rare event, and happens
only after a long period of quiescence, during which the
profile has been pushed to criticality. These large collapse
events are not periodic. The precise relation between these
edge ejections and the well-known phenomena of ELMs
[15,16] is unclear, since some ELMs may involve global
MHD instability processes [17] which are not included in
our simple model here. We studied a statistics of quiescent
periods between edge events. For deposition Nf � 1, the
quiescent time  distributed exponentially, a well-known
fact for sandpiles; see Fig. 4, left panel. As deposition
increases, the distribution changes its functional form.
Nf � 3 is a special case:  is always 0, as obvious from
Fig. 3. For Nf � 10=3, the distribution of  is well fitted
by a Gaussian plus an exponential function / e�=6, as
shown in Fig. 4, left panel. For larger Nf, the probability
density function (PDF) of  becomes a power law / �3:2

with an index essentially independent on Nf; see Fig. 4,
right panel. Many systems, which are thought to exhibit
intermittent behavior, show power law distribution of
time periods between bursts. A relevant example can
FIG. 2. Widths of the pedestal (triangles) in the simulations
with different deposition rates Nf.
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FIG. 3. The space-time pattern of the pile: white cells are
stable, while gray and black cells are in first and in second
unstable ranges of slopes, respectively. On the left: threshold
deposition Nf � 3, and the pedestal is not formed. On the right:
the deposition Nf � 10=3 exceeds the threshold and the ped-
estal appears. In this case, the transport through the edge is
time intermittent.
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be found in the study [18] of density fluctuations of
magnetically confined plasma.

We have studied both the scaling of the mean flux with
gradient and the spectrum of avalanches in the sandpile
with the aim of elucidating how the formation of a ped-
estal affects each of these. Nf grains per iteration are
distributed randomly through all cells and, eventually,
have to be transported to the edge. Thus, one can readily
calculate an average flux 
r through any cell at radius r
and to relate it to an average local slope Zr: Figure 5 is
a family of parametric plots of 
�r� vs Z�r� for Nf from 1
to 8. 
 as a function of Z is well defined and monotone for
Z & 10 (i.e., in L mode and in the core region of H mode).
The apparent slope steepening at 
 	 1:5 is a transition to
a supercritical slope, characteristic of a standard sandpile
[19]. Note that this is clearly distinct from the steepening
associated with transport bifurcation. The slope jump
�
=�Z � 0 at 
 	 2:8–3:0 is a pedestal shoulder. At
the pedestal, where Zr > Zc2, 
�Z� branches into a family
of curves, parametrized by Nf, in such a way that the
FIG. 4. Distributions of quiescent time between edge trans-
port events. Left plot: for the marginal case of Nf � 10=3,
when the pedestal just appeared; the fit for quiet time distri-
bution is e�10:5���10=3�2=12 � e�9�=6�, i.e., Gaussian � expo-
nent. Right plot: when the pedestal is 30–50 cells wide, the
main body of the distribution is a power law, and the tail is
exponential.
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slope at the edge stays constant Zedge 	 23. In other
words, the local transport dynamics in the pedestal is
strongly coupled to the total flux (which is equal to the
deposition rate), and ultimately to the edge. Through this
coupling, the slope in the pedestal is ultimately controlled
by marginality to the hard (MHD) limit. This suggests an
interesting departure from the conventional paradigm of
local transport dynamics and emphasizes the edge effect
on the pedestal. These could be thought of as sequences of
falling dominos, for example. In L mode, the edge effect
is not apparent, and the slope at the edge grows with
deposition, as seen in Fig. 1.

Avalanches, namely, correlated topplings, that are
space-correlated events in sandpiles with instantaneous
mixing, should be defined as time-correlated events in our
sandpile model. It is interesting to explore the effect of
the pedestal on the avalanche size scaling. This consti-
tutes a sandpile analog of �
 studies implemented on
tokamaks. The main parameter used for statistical analy-
sis of avalanche dynamics is the number of unstable cells
at each time, g�t�. In our paradigm, this parameter char-
acterizes the extent of turbulence activity. We count un-
stable cells separately in the core and in the pedestal to
assess the affect of first and second instabilities. We find
that PDF of flips in the core, and in the pedestal, and that
of total number of flips are all Gaussian. The average
number of flips per one grain added (that is, the average
number of flips needed to transport one grain to the edge)
is constant and independent of the deposition rate as long
as the deposition rate is below threshold. This number
starts to decrease as the pedestal grows and a larger
fraction of flux is carried by second instability.

For deposition rates from 1 to 6, we calculate the power
spectrum of flips, P�!� � jg�!�j2. All spectra for Nf �
Dz are essentially indistinguishable: they show a flat low
frequency region, followed by a short region with P�!� /
!�1, followed by a region with P�!� / !�2:7, as seen in
Fig. 6, left panel. Power spectra after transition are also
indistinguishable from each other, though they differ
substantially from spectra before the transition: a flat
FIG. 5. Family of parametric plots of local flux 
�r� versus
local slope Z�r� for different depositions Nf from 1 to 8. The
‘‘transport’’ function 
�Z� is multivalued for 
 > 3.
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FIG. 6. Power spectra of flips for sandpiles in L mode
(Nf � 3) and in H mode (Nf > 3). Note the change of power
index from 2.7 to 1.4.

FIG. 7. Power spectra of flips in core and in pedestal regions
for the case Nf � 6, when pedestal occupies 	 50% of the pile.
The power content of flips of the pedestal region is an order of
magnitude smaller than that of the core, though the power
index seems to be the same in both regions.
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low frequency region is followed by P�!� / !�1:4, as
seen in Fig. 6, right panel, and the region P�!� / !�1

seems to disappear.
As seen from Fig. 7, the dominant contribution to the

power spectrum comes from flips in the core region; thus
the effect of the pedestal is to truncate or obstruct long-
range, low frequency events, which might connect the
core to the edge. This observation also might explain the
disappearance of the !�1 range in the avalanche power
spectrum—recall that !�1 spectrum is a signature of
long-range memory and self-similarity in avalanche dy-
namics [13]. It is interesting to observe that these trends
are somewhat reminiscent of the ‘‘Bohm’’ scaling to the
‘‘gyro-Bohm’’ scaling change observed when comparing
L-mode and H-mode plasmas [20,21]. Indeed, the sand-
pile studies suggest that the origin of this trend may be the
fact that the pedestal prevents avalanches from ‘‘connect-
ing’’ the core to the plasma boundary.

The simple bistable sandpile discussed here as a mini-
malistic model of confined plasma has yielded several
interesting insights into pedestal structure and dynamics.
Pedestal widths tend to fluctuate in time and expand
inward with increasing deposition. The pedestal width
is fit by the relation w�Nf� � L�1� Ncrit=Nf�, where L
is the pile size. The pedestal gradient is insensitive to the
bistable transport law, and senses only the hard (MHD)
stability boundary. Transport in the pedestal is deter-
mined by proximity to local MHD marginality.
Moreover, the hard profile gradient limit operating in
the pedestal forces a direct coupling of the local transport
there to the deposition. The pedestal forms for uniform
deposition. Thus, deposition scales and turbulence scales
(here the latter is a cell size) are not intrinsic to the
formation of pedestals. Moreover, even in the absence of
global MHD events, the flux through the pedestal is
intermittent, and consists of nonperiodically spaced
bursts or ejections. The pedestal also shields the edge
from core avalanches. Thus, pedestal formation alters
the spectrum of avalanches by eliminating 1=! range
and increasing the high-frequency content. Finally, this
study also highlights the critical importance of an im-
proved quantitative understanding of transport near
MHD (i.e., peeling-ballooning) marginality [22] to a
predictive model of pedestal structure and dynamics.
This is apparent from the fact that many of the phenom-
255001-4
ena studied here stem from the presence of a second, hard
stability boundary.
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