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Spatial and Temporal Coarse Graining for Dispersion in Randomly Packed Spheres
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The propagator for molecular displacements P��; t� and its first three cumulants were measured for
Stokes flow in monodisperse bead packs with different sphere sizes d and molecular diffusion
coefficients Dm. We systematically varied the normalized mean displacement h�i=d and diffusion
length LD �

������������
2Dmt

p
=d. The experimental results map onto each other with this scaling. For LD=d < 0:2

the propagator remains non-Gaussian, and thus an advection diffusion equation is not obeyed, for mean
displacements measured up to h�i > 10d. A Gaussian shape is approached for large mean displacements
when LD > 0:3d.
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conducted with these coarse grainings in mind and cover
a parameter space fh�i; LDg encompassing that of prior

z�0� is the displacement of a spin along the gradient axis z
during t. � is the gyromagnetic ratio of protons, gz is the
Dispersion, the transport of molecules or tracers due to
combined effects of diffusion and fluid flow at low
Reynold’s number, is an important problem both in the
fundamentals of hydrodynamics [1–3] and in its appli-
cation in diverse fields ranging from biological perfusion,
chemical reactors to soil remediation, and oil recovery.
The probability distribution of displacements in the long
time and large displacement regime is expected to be-
come a Taylorian; i.e., its dynamics are given by a coarse-
grained advection diffusion equation giving rise to a
Gaussian distribution whose center moves at the average
velocity, and whose mean square displacement 
2 is given
by a time-independent dispersion coefficient D � 
2=2t.
de Gennes [3] pointed out that this simple picture is
‘‘upset’’ in a porous medium when stagnation zones are
present. In many experiments [4–10] and simulations
[11,12] on packed spheres—the simplest random porous
medium—the distribution appears to be non-Gaussian
and non-Taylorian in certain regimes, and not in others.
The purpose of this Letter is to investigate how the
distribution of displacements evolves under controlled
and systematic variation of spatial and temporal coarse-
graining parameters. We delineate different experimental
regimes and assert that in most of the recent experiments
the distribution remains essentially non-Taylorian.

The streamlines of Stokes flow (Re � 1) in a porous
medium provide a quenched random system [13,14] in
which molecules hop between streamlines and flow chan-
nels by random walks. In this regard the slow flow prob-
lem in complex geometries is analogous to turbulent
diffusion [15]. In the absence of diffusion, mechanical
mixing leads to dispersion as molecules move down-
stream and sample various regions of the flow field. The
spatial coarse-graining length is defined by the mean flow
distance h�i with which a representative section of the
flow field is sampled. The diffusional coarse graining is
measured by the diffusion length LD �

������������
2Dmt

p
, where t is

the time scale of the experiment. Our experiments are
0031-9007=02=89(25)=254501(4)$20.00 
experimental and numerical work and providing a unify-
ing picture of the preasymptotic dispersion processes.

The experiments were performed on two random packs
prepared by pouring glass spheres of d � 152
 12 �m
or d � 215
 15 �m into Teflon tubes of 18 mm diame-
ter, tapping them down and sealing the ends with sieves to
keep them in place. Subsequently the packs were filled
with water (Dm ’ 2:1� 10
9 m2=s) or dodecane (Dm ’
0:8� 10
9 m2=s) and a homogeneous fluid saturation
was confirmed using 1D NMR images. The fluid was
then pushed through the pack with mean flow velocities

vv up to 16 mm=s and Reynolds numbers Re < 1. Constant
flow rates were maintained with ‘‘ISCO-1000D’’ piston
pumps.While the fluid flowed pulsed field gradient(PFG)-
NMR was used to tag the positions of the fluid’s polarized
protons at an initial time t0 and to then obtain the proba-
bility distribution for displacements along the direction
of the mean flow at a later time t0 � t. The PFG-NMR
experiments measure explicitly the stagnant volumes in
the pore space and their coupling to the flow. This con-
trasts with traditional effluent measurements [4,16,17],
which deduce these properties from effluent data and
heuristic capacitance models. Various PFG techniques
[18–20] have been used by several experimental groups
[6,8,9,21–24] to study dispersion in porous media. We
used a standard alternating pulsed gradient stimulated
echo [19] pulse sequence commonly used in this type of
experiment, for example, as in Refs. [8,9]; NMR details
for our experiment are not out of the ordinary and will be
reported elsewhere. The accuracy of the pulse sequence
and measurement was confirmed with bulk diffusion
measurements on water and dodecane. The velocity inde-
pendence of the measured relaxation time T1 was also
verified.

The data are analyzed readily as the signal is propor-
tional [19] to the ensemble average heiq� i over all polar-
ized spins, where q � 2���gz is the magnetization wave
vector set up by the pulsed field gradients and � � z�t� 
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amplitude of the pulsed field gradient, and � is the effec-
tive gradient duration. The signal heiq� i � const�R
P�� 0; t�eiq�

0
d� 0 is measured for a set of 128 equally

spaced values of q between 
qmax.
Propagators P��; t� [25] are determined by inverse

Fourier transform of the data set. The typical propagators
shown in Fig. 1 demonstrate the role of diffusion in
sharpening the displacement distribution. They are mea-
sured using different fluids and flow times, for the same
mean flow distance h�i=d � 3:2. When flowing water or
dodecane for the same time the water propagators are
narrower than those measured with dodecane, which is
clear evidence for better diffusive coupling of the fastest
and slowest parts of the flow field to the mean flow. A
similar phenomenon is observed when comparing propa-
gators for either fluid obtained with different flow times t,
where propagators appear narrower when t, and hence
LD �

������������
2Dmt

p
, is increased. Finally, water and dodecane

propagators overlap rather well when their respective
diffusion lengths are nearly the same, confirming that
the shape of the propagator depends on LD. We also note
that the diffusive narrowing no longer occurs once LD has
grown to be an appreciable fraction of the sphere diame-
ter, for example, in the near identical water propagators
obtained at LD=d � 0:57 and LD=d � 0:43. A distorted
and visibly non-Gaussian shape is observed for small LD,
most obviously so in the dodecane propagator obtained
for t � 0:1s, LD=d ’ 0:08, which displays a pronounced
‘‘bump’’ [23] at zero displacement, a depressed peak
around the mean displacement, and a high displacement
tail. The bump is due to stagnation zones which have not
had the time to couple into the flow by diffusive exchange.
Similarly the tail at high displacement originates from
the fastest streamlines whose occupants have not yet
sampled the slower parts of the flow field. The stagnation
feature has a somewhat rounded appearance, because
FIG. 1. Propagators at a fixed mean displacement h�i �
490 �m, for various diffusion times in dodecane (solid sym-
bols) and water (open symbols). Sphere diameter d � 152 �m.
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of windowing applied to the data before performing
the Fourier transform, in order to suppress ringing.
Nevertheless, the presence of the stagnation feature is
clear and unambiguous.

Quantitative measurements of the deviation from a
Gaussian shape are derived from a cumulant analysis of
the data obtained for small q. The cumulant expansion
reads [26,27] logheiq� i �

P
1
j�1

�iq�j

j! Xj, and the first three
cumulants X1 � h�i, X2 � h�� 
 h�i�2i � 
2, X3 � h�� 

h�i�3i of P�� 0; t� are measured directly by fitting the real
and imaginary parts of logheiq� i to a parabola and a linear
plus a cubic term, respectively. This is illustrated in
Fig. 2, which shows data and polynomial fits obtained
for h�i=d � 2:3. The phase of the NMR signal
[Im�logheiq� i�] is plotted in Fig. 2(b), after the linear
term proportional to the mean displacement, indicated
by the dashed line, has been subtracted from the phase for
clarity. The quantitative discussion below is based on data
and fits similar to those shown in Fig. 2.

In Fig. 3 we plot the propagators’ normalized second
cumulant for different flow times t as a function of h�i=d.
The experiment with dodecane in 215 �m spheres probes
the preasymptotic regime with diffusion lengths LD rang-
ing from 7% to 26% of a sphere diameter. For h�i=d ’
0:14 and the longest diffusion length LD=d � 0:26 the
value of 
2 is dominated by longitudinal diffusion and
thus 
2 ’ L2

D. By contrast, for h�i=d ’ 0:14 and the short-
est diffusion length LD=d � 0:07 the width of the dis-
placement distribution is dominated by coherent flow [6]
and 
2 � L2

D. Here the displacements of protons occupy-
ing different streamlines have not been averaged much in
space or time, so 
2 reflects the instantaneous velocity
distribution in the sphere pack. It varies at the pore scale
due to variations in the radius of any flow channel. Neither
spatial nor temporal coarse graining has taken place
yet. Increasing the mean displacement enhances spatial
FIG. 2. NMR data and fits vs q obtained for four different
diffusion lengths, at h�i=d ’ 2:3. (a) NMR magnitude data
shown with symbols; parabolic fits shown as solid lines.
(b) NMR phase data shown with symbols, after subtraction
of the linear term �lin � qh�i (dashed line). Linear � cubic fits
shown as solid lines.
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FIG. 4. Skewness �1 � X3=

3 vs normalized mean displace-

ments and diffusion lengths: (�) dodecane and d � 215 �m,
(� ) water and d � 215 �m, (�) dodecane and d � 155 �m.
The arrow marks �1 < 0.

FIG. 3. Second cumulant of the displacement distribution as a
function of mean flow distance and flow time.
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averaging, and the four curves come together and inter-
sect at h�i=d ’ 0:55. For even larger mean displacements
they spread out again, but now 
2 is smaller for larger LD.
This reflects the diffusional narrowing already illustrated
in Fig. 1. Two observations can be made here. First, the
diffusional narrowing can occur only when the stagnant
or very slow flow zones of the velocity field are small (i.e.,
not macroscopic) and are located within a diffusion
length of the fast-flowing backbone. For example, these
zones may be located near where spheres touch [28,29].
Second, the spread of 
2 with t at a given large distance
h�i is reminiscent, though it is weaker, of Saffman’s
logarithmic diffusive corrections [13,14,30] to disper-
sion, where 
2 / f�h�i� logPe, and Pe � 
vvd=Dm is the
Péclet number.

In Fig. 4 we follow Crámer [27] and Saffman [14] and
quantify the deviation from a Gaussian distribution in
terms of the skewness �1 � X3=


3, for three experi-
ments, where X3 is the third cumulant determined from
the fitted cubic term of the NMR phase. The skewness is
plotted against the diffusion length LD and the mean
displacement h�i, both normalized by the sphere diame-
ter. All data for different sphere diameters and diffusion
coefficients collapse onto a surface in the parameter space
fh�i=d; LD=dg. The solid lines are obtained by fitting
suitable polynomials and power laws and serve as a guide
to the eye. For small diffusion and displacement the
skewness is largest. It arises from stagnation zones and
from the distribution of velocities. For short diffusion
lengths the skewness decreases rapidly as LD=d is
increased. This diffusion dependence is less dramatic
for LD=d > 0:2, but nevertheless the skewness continues
to decrease as diffusion increases. As h�i grows towards
d the skewness first increases for all diffusion lengths,
then decreases again for h�i=d > 1. For the largest
mean displacements and LD=d ’ 0:08 the skewness be-
comes negative due to the continuing presence of the
stagnant fluid, while steadily approaching zero for the
larger diffusion lengths. This long diffusion and large
displacement trend is consistent with an approach to the
Gaussian shape expected for the limiting case of large
254501-3
displacements and long diffusion times. This is in contrast

to the case of short LD where the propagator evolves
from one non-Gaussian shape with positive skewness to
another non-Gaussian shape with negative skewness.
The negative skewness reflects the fact that for large h�i
and small LD the fluid ‘‘left behind’’ in stagnation zones
has considerable weight in the third cumulant. Here
the propagator will look approximately bimodal, with a
displaced Gaussian centered far from the origin and a
peak at the origin whose area is proportional to the
stagnant volume, and whose width is proportional to
its size.

Figure 4 provides a convenient phase diagram in which
to unify and understand various dispersion experiments
and simulations performed on randomly packed mono-
disperse spheres. PFG-NMR experiments performed to
date are consistent with our results but have traversed the
parameter space fLD; h�ig on parabolic trajectories (con-
stant velocity, variable t) or straight line trajectories
(constant t, variable velocity) and have, with the excep-
tion of the work by Ding and Candela [21], explored
dispersion in the limit of short diffusion lengths where
the propagators are not Gaussian and where consequently
all measurements of 
2�t� will depend on the details of
the experimental path taken through parameter space
fLD; h�ig.

Measurements of 
2�t� have been sought in order to
find the dispersion D / 
2�t�=t, because the dependence
of D�Pe� reflects the nature of the mixing process. Taylor
considered Poiseuille flow in a pipe, where there is no
mechanical mixing at all. His result showed D / P2

e in
the asymptotic limit, where the characteristic size d is the
diameter of the pipe, and the coarse-graining time d2=Dm
is set by the time required by a molecule to sample all the
streamlines in the pipe. For porous media a heuristic
model of mechanical mixing where streamlines perform
a random walk with step length d and a step time of order
254501-3
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d= 
vv leads to a dispersion coefficient given by Einstein’s
result D � d2=�d= 
vv� / Pe. Saffman modeled a porous
medium as a statistically isotropic network of straight
capillaries. His calculation leads to D / Pe logPe.
Baudet et al. [30] show that even for a uniform flow
past a sphere, the distribution of residence time is af-
fected by stagnation points and give logarithmic behav-
ior. For a distribution of transit times, for example, Levy
distributions [15], one can expect anomalous behavior,
i.e., 
2�t� / t�, � � 1, and a dependence of D�Pe� other
than those mentioned above. In simple bead packs we do
not expect any such anomalous behavior and, indeed,
Ding and Candela [21] find asymptotic behavior in ex-
cellent agreement with Saffmann’s prediction. It is ob-
vious that in the preasymptotic regime, the putative
dispersion computed by the ratio 
2=t need not be a
simple function of Pe. NMR and effluent measurements
can be expected to produce consistent results for a
Gaussian distribution with a well defined dispersion co-
efficient D, which is predicated upon a mean displace-
ment length much larger than any spatial and
permeability correlation lengths, and an experimental
time scale long enough to couple all fluid volumes into
the mean flow by diffusion. How dispersion depends on
LD can be used as a tool to extract the inhomogeneity
length scales associated with stagnation zones. In NMR
the range of accessible LD is set by the NMR relaxation
time T1 and is of order

���������������
2DmT1

p
or less. Analogous

miscible displacement measurements of the skewness
as a function of time are the logical complement to the
PFG-NMR measurements for longer stagnation length
scales.

In conclusion, using the first direct measurement of the
third cumulant we quantify the magnitude and sign of
deviations of the displacement distribution from a
Gaussian shape. We demonstrate that stagnant zones of
the flow field in bead packs are smaller than about 0.3 bead
diameters, and, most importantly, we demonstrate that
data obtained with different fluids and bead sizes can be
mapped onto each other when understanding them in
terms of a normalized diffusion length and mean dis-
placement. Thus we provide the first conceptually unified
experimental picture of preasymptotic dispersion in the
canonical physicists’ model of a porous medium, the
random pack of monodisperse spheres.
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