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Nonequilibrium Probabilistic Dynamics of the Logistic Map at the Edge of Chaos
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We consider nonequilibrium probabilistic dynamics in logisticlike maps xt�1 � 1� ajxtj
z, �z > 1� at

their chaos threshold: We first introduce many initial conditions within one among W � 1 intervals
partitioning the phase space and focus on the unique value qsen < 1 for which the entropic form Sq �
�1�

P
W
i�1 p

q
i �=�q� 1� linearly increases with time. We then verify that Sqsen �t� � Sqsen �1� vanishes like

t�1=
qrel�W��1� [qrel�W� > 1]. We finally exhibit a new finite-size scaling, qrel�1� � qrel�W� / W�jqsenj.
This establishes quantitatively, for the first time, a long pursued relation between sensitivity to
the initial conditions and relaxation, concepts which play central roles in nonextensive statistical
mechanics.
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dealing with; q � 1 recovers the usual BG expression,
S1 � �

PW pi lnpi. We may think of q as a biasing pa-
the probability to be soon associated with the ith cell.
Several works [11–15] have shown that the description of
Connections between dynamics and thermodynamics
are not at all completely elucidated. Frequently, thermo-
statistics may sound as if it would consist of only a self-
referred body, which could dispense dynamics from its
formulation. But this has long been known not to be true
(see [1] and references therein). One possible reason for
this essential point having been poorly emphasized is
that, when dealing with weakly interacting systems,
Boltzmann-Gibbs (BG) thermodynamical equilibrium
may be formulated without referring to the underlying
dynamics of its constituents. As complex systems came to
the front line of research (by complex we mean here the
presence of at least one of the features: long-range inter-
particle interactions, long-term memory, fractal nature of
a pertinent phase-space, small-world networking), it be-
came necessary to revisit this fundamental issue [2].
Indeed, a significant number of systems, e.g., turbulent
fluids [3,4], electron-positron annihilation [5], economics
[6], motion of Hydra viridissima [7], and others, are
known nowadays to be not properly described with BG
statistical mechanical concepts. Systems such as these
have been successfully handled within nonextensive sta-
tistical mechanics. The purpose of this Letter is to nu-
merically illustrate, with a very simple dynamical model
(logisticlike maps), that basic dynamical concepts such as
the sensitivity to the initial conditions and the relaxation
towards equilibrium are deeply entangled, thus yielding a
new analytic scaling connection.

The basic building block of nonextensive statistical
mechanics is the nonextensive entropy [8]

Sq �
1�

PW
i�1 p

q
i

q� 1
�q 2 R�: (1)

The entropic index q characterizes the statistics we are

i�1
0031-9007=02=89(25)=254103(4)$20.00 
rameter: q < 1 privileges rare events, while q > 1 privi-
leges ordinary events: p < 1 raised to a power q < 1
yields a value greater than p, and the relative increase
pq=p � pq�1 is a decreasing function of p, i.e., values
of p closer to 0 (rare events) are benefited. Corre-
spondingly, for q > 1, values of p closer to 1 (ordinary
events) are privileged. BG (q � 1) is the unbiased statis-
tics. A concrete consequence of this is that the BG for-
malism yields exponential equilibrium distributions,
whereas nonextensive statistics yields power-law distri-
butions (the BG exponential is recovered as a limiting
case: we are talking of a generalization, not an alterna-
tive). Many developments concerning this formalism are
available in the literature [9,10], but there are still im-
portant points that remain to be better understood. One of
them is what lays behind the quite impressive results re-
cently put forward for fully developed turbulence. Agree-
ment between theoretical treatments and experimental
data has been achieved along two different approaches,
both based on nonextensive statistical mechanics, but, at
first sight surprisingly, one of them with q > 1 [3] and the
other with q < 1 [4]. A similar scenario (using both q < 1
and q > 1) is also found in the description of low dimen-
sional dynamical systems, particularly in the z-logistic
maps at the threshold of chaos. This Letter intends to shed
light on this problem, by investigating these maps both in
the chaotic region and at the edge of chaos, and by
showing, for the first time, a long pursued connection,
namely, between the sensitivity-based and the relaxation-
based approaches.

Consider the z-logistic iterative equation xt�1 � 1�
ajxtjz ��1 � xt � 1; 0< a � 2; z > 1; t � 0; 1; 2; . . .�
for which z � 2 recovers the logistic map, and partition
the phase space into W cells of equal measure, pi being
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FIG. 1. Sqsen �t� for z � 2. (a) Chaotic region, with qsen � 1;
(b) edge of chaos, with qsen � 0:2445, associated to the region
before the peak [12,14], and with qrel�W� > 1, associated to the
region after the peak. (The highest value attained by S0:2445, for
a given W, is about 70% of the value corresponding to equi-
probability.) Notice that, for a � 2, the stationary state is
achieved for t much smaller than that for a � ac, which of
course reflects the fact that relaxation is exponentially quick in
the former (as is also the case for a < ac), whereas it is a power
law in the latter.
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such dynamical systems is properly achieved by using the
nonextensive entropy, Eq. (1), with a specific z-dependent
value of q.

Let us first recall the sensitivity-based approaches,
which determine qsen � 1 (sen stands for sensitivity).
Up to now, three different methods have been developed
which provide the special value qsen (sometimes noted
as q�). The first method [11] is based on the sensitivity
to initial conditions. At the threshold of chaos [a �
ac�z�], the Lyapunov exponent �1 vanishes and the sys-
tem is weakly sensitive (weak chaos), i.e., the upper
bound separation between nearby trajectories ��t� �
lim�x�0�!0

�x�t�
�x�0� typically evolves [16] in time according

to the power law

��t� � 
1� �1� qsen��qsent�
1=1�qsen ��qsen > 0�; (2)

which is solution of the nonlinear differential equation
_�� � �qsen�

qsen (this equation recovers, for qsen � 1, the
usual exponential sensitivity to the initial conditions,
referred to as strong chaos). The second method is based
on the geometrical description of the multifractal attrac-
tor [12,13]. The value of qsen is determined by 1=1�
qsen � �1=�min� � �1=�max�, where �min and �max are
the values of the end points of the multifractal function
f���. This beautiful equation relates dynamics (left-hand
side) with geometry (right-hand side). The third method
is related, as we shall specify, to a conjectured generaliza-
tion of the Pesin relation [14,15]. In one of the W cells in
which the phase space has been divided, we initially put
(randomly or uniformly distributed) N points �N � W�.
We then follow the occupancies fNi�t�g of all cells
[
PW

i�1 Ni�t� � N], which enable the calculation of the
probabilities pi�t� � Ni�t�=N, which enable in turn the
calculation of Sq�t� as given by Eq. (1). We can next define
a nonextensive version of the Kolmogorov-Sinai entropy,
namely, Kq � limt!1 limW!1 limN!1 Sq�t�=t. The spe-
cial value q � qsen is the one for which the entropy
production Kq is finite (if q < qsen, Kq ! 1, and if q >
qsen, Kq ! 0). It is quite remarkable that all three meth-
ods give (within an acceptable numerical error) one and
the same value for qsen (qsen � 0:2445 . . . for z � 2).

Let us now turn to the relaxation-based approach of the
problem, first tackled in [17]. We start now [17] with an
ensemble of initial conditions uniformly spread over the
entire phase space (a procedure that resembles the
Gibb;sian approach of statistical mechanics), instead
of within a single among the W cells (closer to a
Boltzmannian approach), and investigate the rate of
convergence onto the multifractal attractor at the onset
of chaos. At t � 0 all W cells are occupied [hence, Sq �
�W1�q � 1�=�1� q�]. As t increases, the number Woccupied

of cells that have at least one point inside typi-
cally decreases (shrinking of the Lebesgue measure) as
1=
1� �qrel � 1�t=�q�1=�qrel�1� (rel stands for relaxation;
qrel � 1; �q > 0 is a characteristic relaxation time).
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When applied to the chaos region (e.g., z � 2, a � 2),
all these methods yield qsen � qrel � 1, in accordance
with the usual BG concepts, founded on strongly chaotic
systems, consistently with Boltzmann’s ‘‘molecular
chaos’’ hypothesis (see [18] and references therein).
When applied to the edge of chaos ac�z� of the z-logistic
maps, it is obtained [17] qrel�1� [qrel�1� � 2:4 . . . for
z � 2]. In this Letter, we start with N points (we adopt
N � 10W for numerical convenience) uniformly distrib-
uted inside a single specific cell chosen as soon specified.
We compute Sqsen�t� and verify that, for a fixed value of W,
Sqsen�t� asymptotically reaches Sqsen�1� [Sqsen�1� > 0 mo-
notonically increases with W]. Sqsen�t� reaches its t ! 1
value from above, preceded by an overshooting, which
might be very strong. The initial cell is chosen as that one
which presents the highest overshooting.

If we consider the strongly chaotic case a � 2, hence
qsen � 1, S1�t� slightly overshoots and rapidly saturates,
as illustrated in Fig. 1(a) for z � 2. At the onset of chaos,
however, Sqsen�t� presents a very pronounced overshoot
and slowly approaches its final value Sqsen�1� [Fig. 1(b)].
We then compute, for all times after the overshooting,
254103-2
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�Sqsen�t� � 
Sqsen�t� � Sqsen�1��. We find a power-law de-
cay, whose log-log slope depends on W. (Log-periodic
oscillations such as those reported in [17] are also de-
tected here and are better visualized for z < 2.) We iden-
tify this slope with 1=
qrel�W� � 1� (as an alternative way
of obtaining qrel). In the limit W ! 1, we observe that
qrel�1� precisely coincides, for all values of z, with the
value found in Ref. [17] (their values correspond to infi-
nitely fine graining W ! 1). The power-law region of
�Sqsen�t� increases with W(see Fig. 2). In order to better
identify this region, we consider only those time intervals
whose linear correlation coefficient is larger than 0.99. In
order to increase the precision of qrel�W�, we take aver-
ages over various possible intervals, more precisely, rang-
ing from various initial and various final times, as shown
in Fig. 2. Moreover, in order to further minimize the
effect [on the precision of qrel�W�] of the oscillations of
Sqsen�t� at the onset of chaos and also to better identify the
attractor — the invariant distribution — we introduce a
numerical improvement in the iteration rule which does
not affect the asymptotic dynamics of the map: we aver-
age the distribution corresponding to xt with that corre-
sponding to xt�1 (the actual values of x must be preserved
while averaging). This procedure strongly reduces the
considerable fluctuations in the distribution of points at
t ! 1 and enables us to identify the attractor associated
with the map (we refer to the attractor in the space of
distributions, and not in phase space). The computer
implementation of these numerical benefits demands ad-
ditional memory and an increase of the CPU time. The
oscillations that remain are considerably smaller, and
they can be further reduced by extending the method in
order to take into account more than one previous time
step. However, for the accuracy we seek in this work, it is
clearly enough to average the distributions of xt�1 and xt.
FIG. 2. �Sqsen �t� � Sqsen �t� � Sqsen �1� at the z � 2 chaos
threshold, for typical W. For each W we consider as the
power-law region (linear correlation coefficient above 0.99)
that going from the left interval to the right one.
Furthermore, the values for qrel�W� in Fig. 3 were obtained
by averaging over many starting (ending) points inside the left
(right) interval.

254103-3
We emphasize that this kind of averaging is just a trick to
minimize the fluctuations (the original dynamics is pre-
served, once we average the distribution of x, and not x
itself). If the procedure is not adopted, we find the same
results, though with less precision. After all these numeri-
cal improvements have been implemented, a remarkable
law emerges, namely,

qrel�1� � qrel�W� / W�jqsenj (3)

(see Fig. 3). This equation is somehow analogous to the
expressions that appear in finite-size scaling [19]. This
law is quite impressive, since it relates two basic dynami-
cal properties of dissipative systems, namely, relaxation
onto equilibrium and sensitivity to the initial conditions
(the basis for mixing). Moreover, the (coarser or finer)
graining —1=W for the z-logistic maps — is involved,
pretty much in the same way as it occurs with the values
of q (here noted as qrel) appearing in Beck’s approach [3]
of fully developed turbulence, where the entropic index
depends on the distance between the two points at which
the fluid velocities are measured. Other phenomena where
a similar scaling relation may occur are the distribu-
tion of transverse momenta of hadronic jets produced in
electron-positron annihilation experiments [5] and the
saddle-point dynamics of the Henon-Heiles system [20].
Let us also mention that the scaling relation, Eq. (3), has a
moderate sensitivity to the value used for qsen (see the
inset of Fig. 3). It is important to emphasize that Eq. (3)
reflects the fact that the limits limt!1 limW!1 (relevant
for qsen; see, for instance, [14]) and limW!1 limt!1 (rele-
vant for qrel, as exhibited here) do not commute (nonuni-
form convergence) in general (in other words, generically
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FIG. 3. W dependence of qrel for typical values of z. The
W ! 1 extrapolated values coincide with the values reported
in [17]. The abscissa has been chosen to be �W=1000��jqsenj (in-
stead of W�jqsenj) for better visualization. Inset: Linear cor-
relation coefficient procedure which has been used to select a
specific numerical value for the sensitivity entropic index
qsen�z�.
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qsen � qrel, whereas for strong chaos it is qsen�qrel�1).
This result is similar to the noncommuting t!1 and
M!1 limits for long-range interacting M-body Hamil-
tonian systems [21], for which vanishing Lyapunov ex-
ponents have already been detected [22] (we remind the
reader that these limits do commute for short-range in-
teractions). We finally exhibit Fig. 4, which shows qrel�1�,
as well as qsen (taken from [11]), for typical values of z.
For qrel�1� we have indeed verified the coincidence (with
high precision for all z) with the values observed in [17]
by starting with uniform occupation of the phase space
and following the shrinking of the Lebesgue measure. In
addition to these results, we observe that qsen�z!1�’
0:72 and limW!1qrel�z!1�’4=3.

In conclusion, the scenario which emerges is that the
thermal equilibrium of all Hamiltonian systems whose
dynamics is dictated by noninteracting or short-range
interacting particles is described by Boltzmann-Gibbs
statistical mechanics, and usual thermodynamics apply,
typically together with the usual exponential relaxation
to equilibrium. But for systems with complex dynamics
(complex in the sense previously described), we cannot
know a priori how the relaxation to the stationary state
occurs. However, for a vast class of such systems, power-
law relaxation does occur. To determine the associated
exponent, we must analyze at least once the dynamics of
that particular nonextensivity universality class, in such a
way as to determine once the corresponding values of q.
For z-logistic maps, Eq. (3) (main result of the present
work) gives the connection between those values of q. The
analogous task for Hamiltonian systems would be very
welcome.
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