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We study the effects of noise on the Lorenz equations in the parameter regime admitting two stable
fixed point solutions and a strange attractor. We show that noise annihilates the two stable fixed point
attractors and evicts a Hopf-bifurcation-like sequence and transition to chaos. The noise-induced
oscillatory motions have very well defined period and amplitude, and this phenomenon is similar to
stochastic resonance, but without a weak periodic forcing. When the noise level exceeds certain
threshold value but is not too strong, the noise-induced signals enable an objective computation of
the largest positive Lyapunov exponent, which characterize the signals to be truly chaotic.
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chaotic. When the noise level is not too strong, the
noise-induced motions enable objective computation of
the largest positive Lyapunov exponent, and thereby qual-
ify as true chaotic motions.

duced oscillatory motion is well defined [see Fig. 4(c)
below], the amplitude varies wildly. However, when r is
close to 24.74, such as 24.72, the oscillatory motion not
only has well defined period, but also has very well
Noise is ubiquitous in nature and man-made systems,
such as nonlinear solid state devices, physiological sys-
tems, and fluid flows. In nonlinear dynamical systems,
noise can induce a number of interesting phenomena,
including stochastic resonance [1] (for a recent review,
see [2]), noise-induced instability [3,4], noise-induced
order [5], and noise-induced chaos [6–11].

To gain new insights into the effects of noise on a
dynamical system, in this Letter we study the Lorenz
equations with parameters admitting multiple stable at-
tractors. It has been found that multistability is common
for a variety of nonlinear systems including electronic
circuits [12], lasers [13], geophysical models [14], me-
chanical systems [15], and biological systems [16] such as
neurons [17], human proprioceptive system [18], and
visual perception [19,20]. Earlier works on the effects
of noise on dynamical systems with multiple stable at-
tractors include the work of Arecchi et al. [9] on noise-
induced hopping between two periodic states, and by
Kautz [8] on noise-induced or inhibited hopping between
a periodic state and a metastable chaotic state. In
this Letter, we report a new mechanism for stochastic
resonancelike oscillatory motions in the Lorenz equa-
tions induced by noise. The stochastic resonancelike
behavior is embodied in a Hopf bifurcationlike
sequence evicted by noise, where the strength of noise
plays the role of a bifurcation parameter. The induced
oscillatory motions have very well defined period and
amplitude, with the amplitude steadily increasing with
the level of noise, until suddenly the motion appears
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We study the following noise-driven Lorenz equations:

dx=dt � ���x� y� �D�1�t�;

dy=dt � rx� y� xz�D�2�t�;

dz=dt � xy� bz�D�3�t�:

(1)

Here h�i�t�i � 0, h�i�t��j�t
0�i � �ij��t� t0�, i; j �

1; 2; 3, where angle brackets denote expectations,
� � 10, and b � 8=3. Note that D2 is the variance of
the Gaussian noise terms, and thus can be considered to
describe the noise strength, and D � 0 describes the clean
Lorenz system. When the noise is absent, for r 2
�24:06; 24:74�, the clean system has two stable fixed
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; r� 1�, and a strange attractor.

Depending on initial conditions, the solution may settle
down on any of these three attractors. This is the parame-
ter interval that we shall primarily focus on. For r 2
�13:926; 24:06�, the system exhibits metastable chaotic
behavior; i.e., for certain initial conditions, it exhibits
‘‘chaoslike’’ behavior for a very long period before set-
tling down on either C� or C�.

We assume initially there is no motion; i.e., the system
stays at either C� or C�. When there is no noise, the
system will, of course, just stay there. When a very small
amount of noise is added, intuitively we would expect the
solution to stay close to either C� or C� and fluctuate.
When the parameter r is away from r � 24:74, such as
r � 24:10, this is indeed the case, as is shown by Fig. 1(a),
where we notice that even though the period of the in-
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FIG. 2. (a)–(c) Time series for the Lorenz equations with
r � 24:72, D � 0:001 (a), D � 0:01 (b), and D � 0:02 (c).
The sampling time for (a)–(c) is �t � 0:06. In (d), we have
plotted, in log-log scale, the variation of the amplitude of the
oscillation with the noise strength (D2) for D not too large. The
slope of the linear line is 0.51.

FIG. 1. Time series for the Lorenz equations with r � 24:10,
D � 0:1 (a) and D � 0:2 (b). The sampling time is �t � 0:06.
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defined amplitude, as shown in Figs. 2(a) and 2(b). Also
note that the amplitude depends on the noise level. This
behavior thus reminds us of the well-known Hopf bifur-
cation. Here, however, the noise level plays the role of a
bifurcation parameter.

To make the above analogy precise, we have examined
the variation of the amplitude of the oscillation with
the strength of the noise, D2, when D is small. From
Fig. 2(d), we indeed observe a square-root dependence
of the amplitude on the noise level, characteristic of Hopf
bifurcations.

What happens when the noise level is further in-
creased? The amplitude of the oscillatory motions, both
the wildly fluctuating case of Fig. 1(a) and the very steady
case of Figs. 2(a) and 2(b), keeps increasing with the
noise level, until suddenly the motion becomes chaoslike,
as shown in Figs. 1(b) and 2(c). The noise level which
induces this chaoslike motions depends on the parameter
r. Examination of the time series of Figs. 1(b) and 2(c)
convinces us that the signal is very similar to that gen-
erated by the usual chaotic Lorenz attractor.

Let us examine first whether the chaoslike signals of
Figs. 1(b) and 2(c) can be characterized as true chaotic
signals. For this purpose we employ the direct dynamical
test for chaos developed in [21], and later used to study
noise-induced chaos in [10,11] and the chaotic nature of
sea clutter signals [22]. The method involves first embed-
ding the time series, fx�i�g, with the sampling time �t,
onto a suitable state space by forming vectors of the form
[23] Xi � 
x�i�; x�i� L�; . . . ; x�i� �m� 1�L��, with m
being the embedding dimension and L the delay time,
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then computing a series of the ��k� curves defined by

��k� �
�
ln

�
kXi�k � Xj�kk

kXi � Xjk

��
(2)

with d � kXi � Xjk � d� �d, where d and �d are pre-
scribed small distances. The angle brackets denote en-
semble averages of all possible pairs of �Xi; Xj�. The
integer k, called the evolution time, corresponds to time
k�t. A pair of d and �d is called a shell. The computation
is typically carried out for a sequence of shells. For true
low-dimensional chaotic systems, the curves ��k� vs k for
different shells form a common envelope, when k is
relatively small. The slope of the envelope estimates the
largest positive Lyapunov exponent. For systems domi-
nated by noise, the common envelope is absent. Note most
conventional methods for estimating the largest positive
Lyapunov exponent amount to estimating the Lyapunov
exponent by ��k�=k�t, when kXi � Xjk is small. When
the common envelope is absent, such an estimate of
the Lyapunov exponent then sensitively depends on the
shell chosen for computation and thus generates incom-
parable values for the Lyapunov exponent among differ-
ent researchers.

The results for the computation of the ��k� curves for
the signals of Figs. 2(c) and 1(b) are shown in Figs. 3(a)
and 3(b), where we observe that the common envelope
exists for both cases. Hence, both signals of Figs. 1(b) and
2(c) lead to an objective computation of the largest posi-
tive Lyapunov exponent, and can be characterized as
true chaotic signals. As is expected, with much stronger
noise, the two equilibrium points C� and C� are also
annihilated and the signal is still chaoslike. However, the
��k� curves eventually cease to form a common envelope,
a phenomenon similar to that studied in [24]; hence the
254101-2



FIG. 3. The ��k� curves for the time series of (a) Fig. 2(c) and
(b) Fig. 1(b). The numbers 1 to 4 correspond to shells defined by

2��i�1�=2; 2�i=2� with i � 9 to 12. The embedding parameters
are m � 4 and L � 3.

FIG. 4. The power spectral density (PSD) for the time series
of (a) Fig. 1, (b) Fig. 1(b), (c) Fig. 2(a), and (d) Fig. 5. It is in
logarithmic scale and normalized by the variance of the noise,
to ensure that the value of the PSD corresponding to the
sharpest peak in the spectrum gives the signal-to-noise ratio.
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chaoslike signals can no longer be characterized as being
truly chaotic.

Next let us consider noise-induced oscillatory signals.
To better appreciate that these signals have a well defined
period and amplitude, we have plotted in Figs. 4(a)–4(c)
the power spectral density (PSD) for signals of Figs. 2(a),
2(b), and 1(a). To more clearly show the dependence of the
PSD on the noise level, we have normalized PSD by the
variance of noise. This way, the value of the sharpest peak
directly corresponds to the signal-to-noise ratio. Since
Fig. 4 is in logarithmic scale, the normalization does
not affect the height of the sharpest peak relative to the
background spectrum due to noise. We observe that in all
these three signals, the period is very well defined by the
(reciprocal of the) sharpest peak in the spectra. The
normalized PSD for signals of Figs. 2(a) and 2(b) is
several orders of magnitude larger than that for the signal
of Fig. 1(a). This clearly says that signals of Figs. 2(a) and
2(b) have much better defined amplitude than that of
Fig. 1(a).

For r � 24:72, we have examined the variation of the
normalized PSD corresponding to the sharpest peak vs
the noise level. This variation has several maxima; hence
the induced oscillatory motions are not simply due to
resonancelike behavior. The underlying reason for this
behavior is probably that the vector field in the Lorenz
equations is very complicated, noting that there are two
stable equilibrium points C� and C�, two unstable limit
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cycles (with vanishing amplitude near r � 24:74), and
the strange attractor. The most interesting point here is
that when the noise is absent, the Lorenz equations do not
allow periodic motions. While conventional stochastic
resonance requires a weak periodic forcing, here the
oscillatory motions are simply induced by noise.

It has been shown [25] that noise may make the Hopf
bifurcation occur slightly before the bifurcation point. To
compare between the noise-induced oscillatory motions
associated with a Hopf bifurcation and in the Lorenz
equations, below we consider the normal form for the
Hopf bifurcation with noise:

du=dt � �v� u�r� u2 � v2� �D1�1�t�;

dv=dt � u� v�r� u2 � v2� �D2�2�t�;
(3)

where �i�t�, i � 1; 2, are independent white Gaussian
noise terms with mean 0 and variance 1. Typically, D1

is taken to be 0, so that the two equations, when written as
a second-order differential equation, describe the motion
of an oscillator with the D2�2�t� term acting as the
stochastic forcing. We have performed two sets of compu-
tations, D1 � D2 and D1 � 0, D2 � 0. Both cases gen-
erate similar results. Below we choose D1 � 0 to present
our results. We shall simply write D2 � D.

When r � 0, Hopf bifurcation occurs for the clean
system. Figure 5 shows a time series of u�t� when r � 0
and D � 0:05. Note that this time series is typical for a
small interval of the parameter r including r � 0. We
observe oscillatory motions with well defined period but
wildly varying amplitude, similar to that shown in
Fig. 1(a). Figure 4(d) shows the normalized PSD for the
signal of Fig. 5. We observe that the normalized PSD for
this case is even lower than that for Fig. 1(a). Thus we
conclude that the noise-induced oscillatory motions in the
Lorenz equations when r is close to 24.74 are much better
254101-3



FIG. 5. The time series for the Hopf bifurcation. The sam-
pling time is 1=30.
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defined than those associated with the actual Hopf bifur-
cation. Note that in a typical stochastic resonance, the
PSD would show sharp peaks superimposed on a broad-
band spectra due to noise. However, the background noise
spectra of Figs. 4(a) and 4(b) are rather insignificant.
Hence, we conclude that the induced oscillatory motions
in the Lorenz equations when r is close to 24.74 are
stronger than those due to stochastic resonance.

To briefly summarize, we have observed a Hopf-
bifurcation-type sequence and transition to chaos evicted
by noise in the Lorenz equations when the parameter r is
close to 24.74. The oscillatory motions induced by noise
are better defined than those associated with an actual
Hopf bifurcation [described by the normal form of
Eq. (3)], as well as stronger than those due to stochastic
resonance. When the noise level is not too high, the noise-
induced chaoslike motions allow an objective computa-
tion of the largest positive Lyapunov exponent, and thus
can be characterized as true chaotic signals. Note that
when the noise level is above a certain threshold value,
neither the equilibrium points C� or C� nor the noise-
induced oscillatory motions can be observed. This behav-
ior may be termed annihilation of some of the coexisting
attractors due to noise [26].

In the parameter region we studied, the clean Lorenz
equations do not exhibit periodic solutions. Hence, the
observed noise-induced oscillatory motions make us sur-
mise that it may be possible for noise to induce a toruslike
route to chaos in systems with a single fundamental
frequency. This, of course, remains to be seen.
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