VOLUME 89, NUMBER 25

PHYSICAL REVIEW LETTERS

16 DECEMBER 2002

Experimental Demonstration of Continuous Variable Polarization Entanglement
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We report the experimental transformation of quadrature entanglement between two optical beams
into continuous variable polarization entanglement. We extend the inseparability criterion proposed by
Duan et al. [Phys. Rev. Lett. 84, 2722 (2000)] to polarization states and use it to quantify the
entanglement. We propose an elaboration utilizing two quadrature entangled pairs for which all three
Stokes operators between a pair of beams are entangled.
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The polarization state of light has been extensively
studied in the quantum mechanical regime of single (or
few) photons. The demonstration of entanglement of the
polarization of pairs of photons has been of particular
interest. This entanglement has facilitated the study of
many interesting quantum phenomena such as Bell’s in-
equality [1]. Comparatively, research on continuous var-
iable quantum polarization states has been cursory.
Recently, however, interest in the field has increased
due to the demonstration of transfer of continuous varia-
ble quantum optical polarization states to the spin state
of atomic ensembles [2]; and to its potential for local
oscillator-free continuous variable quantum communica-
tion networks. A number of theoretical papers have now
been published [3,4], of particular interest is the work of
Korolkova et al [5] which introduces the new concept of
continuous variable polarization entanglement, and pro-
poses methods for its generation and characterization.
Previous to the work presented here, however, only the
squeezing of polarization states had been experimentally
demonstrated [2,6,7].

In this paper we report the experimental transforma-
tion of the commonly studied and well understood en-
tanglement between the phase and amplitude quadratures
of two beams (quadrature entanglement) [8] onto a polar-
ization basis. Quadrature entanglement can be character-
ized using the inseparability criterion proposed by Duan
et al. [9]. We generalize this criterion to an arbitrary pair
of observables and apply it to the Stokes operators that
define quantum polarization states. We experimentally
generate entanglement of Stokes operators between a
pair of beams, satisfying both the inseparability crite-
rion, and the product of conditional variances which is a
signature of the EPR paradox [10]. Interacting this en-
tanglement with a pair of distant atomic ensembles could
entangle the atomic spin states. We also analyze the polar-
ization state generated by combining two quadrature
entangled pairs. We show that if the quadrature entangle-
ment is strong enough to beat a bound /3 times lower than
that for the inseparability criterion, then all three Stokes
operators can be simultaneously entangled.
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The polarization state of a light beam can be described
as a Stokes vector on a Poincaré sphere and is determined
by the four Stokes operators [l1]: SO represents the
beam intensity whereas S 1> S2, and S3 characterize its
polarization and form a Cartesian axis system. If
the Stokes vector points in the direction of S;, S5, or
3'3, the polarized part of the beam is horizontally, line-
arly at 45°, or right-circularly polarized, respectively.
Quasimonochromatic laser light is almost completely
polarized, in this case 3‘0 is a redundant parameter,
determined by the other three operators. All four Stokes
operators can be measured with simple experiments [5].
Following [11] we expand the Stokes operators in terms of
the annihilation @ and creation a' operators of the con-
stituent horizontally (subscript H) and vertically (sub-
script V) polarized modes

So=akay +alay, S, =alaye? + alaye,

S, =alay —alay,,  §y=ialaye " —iala,e®,
(1

where 6@ is the phase difference between the

H, V-polarization modes. Equations (1) are an example
of the well-known bosonic representation of angular mo-
mentum type operators in terms of a pair of quantum
harmonic oscillators introduced by Schwinger [12]. The
commutation relations of the annihilation and creation
operators [ay, @, 1= 6,, withk, I € {H, V} directly result
in Stokes operator commutation relations, [S,,S 1=
2i8;, where i, j, k = 1,2, 3 are cyclically 1nterchangeable
These commutation relations dictate uncertainty rela-
tions, which indicate that entanglement is possible
between the Stokes operators of two beams, we term
this continuous variables polarization entanglement.
Three observables are involved, compared to two for
quadrature entanglement, and the entanglement between
two of them relies on the mean value of the third. To
provide a proper definition of this entanglement, we have
chosen to extend the inseparability criterion proposed by
Duan et al. [9]. The inseparability criterion characterizes
the separability of, and therefore the entanglement
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between, the amplitude X+ and phase X~ quadratures of
a pair of optical beams (denoted throughout by the sub-
scripts x and y) with Gaussian noise statistics. These
quadrature operators are observables and can be obtained
from the annihilation and creation operators, Xt=a+
at,X~ =i(at — a). In this paper we restrict ourselves to
the symmetric situation where all experimental outcomes
are independent of exchange of beams x and y, in this
case the inseparability criterion can be written as

Az

xxy

X+ AL X
Throughout this paper A20 = (50%) where O = (0) +
80. A§+ O is the smaller of the sum and difference
variances of the operator O between beams x and v,
Az, 0 = min{((80, * 60V )?). Note that for physically
realistic entanglement between two observables, one ob-
servable must be correlated, and the other anticorrelated
between subsystems x and y. The minimization utilized
in calculating Ax+y O selects the relevant sign for each
observable. The measure in Eq. (2) relies explicitly on
the uncertainty relation between the amplitude and phase
quadrature operators. Given the general Heisenberg
uncertainty relation A2AA’B = |(8ASB))? =
I[8A, 8B]|>/4 + |(SASB + 8BSA)?/4 [13] it can be
generalized to any pair of observables A, B. Unlike the
commutation relation |[8A, 8B]|, the correlation function
[(8A6B + 6BSA)| is state dependant. In this work we
assume it to be zero and arrive at the sufficient condition
for inseparability

X~ <4 2)

A+ A2

xxy

Az

xxy

B <2|[54, 5B].. (3)

To allow direct analysis of our experimental results, we
define the degree of inseparability /(A, B), normalized
such that I(A, B) < 1 guarantees the state is inseparable

oo AZLA+A2B
IAB)=—"""—— | 4)
2[4, 8B]|

An arbitrary pair of polarization modes may be con-
structed by combining horizontally and vertically polar-
ized modes on a pair of polarizing beam splitters. In the
symmetric situation, which this paper is restricted to, the
horizontally (vertically) polarized input beams must be
interchangeable; therefore, their expectation values and
variances must be the same (ay = (dp ) = (@p,), ay =
(ay.) = <avy> A2X7 = AKX, = AZXH‘, AKX =
A2XE 7= AKX, and the relative phase between hori-
zontally and vertlcally polarized modes for subsytems x
and y must be related by § = 6, = £6, + mm where m is
an integer. Given these assumptions it is possible to
calculate (S, S‘j) from Egs. (1). We choose to simplify
the situation further, providing results that may be di-
rectly related to our experiment. We assume that the
horizontal and vertical inputs are not correlated, and
that each input beam does not exhibit internal ampli-
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tude/phase quadrature correlations. Finally, we assume
that the vertically polarized input modes are bright
(a% > 1) so that second order terms are negligible. The
denominators of Eq. (4) for the three possible combina-
tions of Stokes operators are then found to be

|[8L§18, Sz]l = 4CYHCYV Sin@,
I[68,, 8851l = 4ayay cosb, (5)
[68,, 8851 = 2la?, — a3 l.

In our experiment the phase 6 between the horizontally
and vertically polarized input modes was controlled to be
/2, in this situation |[88, §55]] = 0 which means that
using the inseparability criterion of Eq. (4) it is impos-
sible to verify entanglement between S, and 8. On the
other hand |[8S,, 65,]| and |[85,, 83]| both have finite
values and therefore the potential for entanglement. We
experimentally determined /(S Sz) and 1(S,, §5) from
measurements of ay, ay, and Axﬂ

The experimental transformation between quadrature
and polarization entanglement demonstrated here
becomes clearer if AﬁyS are expressed in terms of
quadrature operators. Assumlng that a%, < a3 we find

from Egs. (1) that AxﬂSl = aVA)%ﬂX;, Axi},SzA
al A§+yXH, and A2, 8, =a}A, XS 15,5,
and I(S,, §3) can then be written
A A a AX+X++A}2€+ X
131, 8,) = 2 (= 1) ©
Ay 8

~ A a? A§+ X++A)2C+V)A(_
18,8 =(1+-2 YR TR ()
ay 4

Equation (6) shows that as ay/ay increases the level of
correlation required for / S b S ») to fall below unity and
therefore to demonstrate inseparability quickly becomes
experimentally unachievable. In particular, if the hori-
zontal inputs are vacuum states 1(S;, S,) becomes infinite
and verification of entanglement is not possible. In con-
trast, Eq. (7) shows that in this situation 1(S,, S;) becomes
identical to the criterion for quadrature entanglement
[Eqg. (2)] between the two horizontally polarized inputs.
Therefore, quadrature entanglement between the horizon-
tally polarized inputs is transformed to polarization en-
tanglement between S, and 3’3. In the following section
we experimentally demonstrate this transformation. The
asymmetry of these results arises because the Stokes
vector of the output mode of each polarizing beam split-
ter is aligned almost exactly along S | (since ay > ay).
This creates an asymmetry in the commutation relations
and a corresponding bias in the uncertainty relations that
define the inseparability criteria.

In our experiment two equal power 1064 nm amplitude
squeezed beams were produced in a pair of spatially
separated optical parametric amplifiers (OPAs). The
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FIG. 1. Experimental production and characterization of con-
tinuous variable polarization entanglement. The optics within
(a) are included to measure 3'2, and those within (b) to measure
3'3. (P)BS: (polarizing) beam splitter.

OPAs were optical resonators constructed from hemi-
lithic MgO:LiNbO; crystals and output couplers and are
described in detail in Ref. [7]. We combined the squeezed
beams with 77/2 phase shift on a 50/50 beam splitter with
interference efficiency of 97.8%. The output beams ex-
hibited the conventional quadrature entanglement [8]. We
modematched each entangled beam into a homodyne
detector that provided amplitude or phase quadrature
measurements and characterized the entanglement with
the inseparability measure given in Eq. (2). We obtained
the result J(X*, X7) = (A2, X" + A2, X7)/4 =0.44,
which is well below unity. We also determined the pro-
duct of conditional variances between the beams
(min,[((8X] + g8X;)*N(8X; — g6X;)?)] < 1), which
was propose by Reid and Drummond [10] as a signature
of the EPR paradox. We observed a value of 0.58 which is
also well below unity.

We transformed the entanglement onto a polarization
basis by combining each entangled beam (horizontally
polarized) with a much more intense vertically polarized
coherent beam (a? = 30a%) with measured mode-
matching efficiency for both of 91% (see Fig. 1). The
relative phase between the horizontal and vertical input
modes 0 was controlled to be 77/2. The two resultant
beams were polarization entangled. We verified this en-
tanglement by measuring correlations of the Stokes oper-
ators between the beams.

Each beam was split on a polarizing beam splitter and
the two outputs were detected on a pair of high quantum
efficiency photodiodes. Dependent on the inclusion of
wave plates before the polarizing beam splitter, the dif-
ference photocurrent between the two photodiodes
yielded instantaneous values for Sl, SZ, or S’; (see
Fig. 1). The variance of the unity gain electronic sum or
subtraction of the Stokes operator measurements between
the polarization entangled beams was obtained in a spec-
trum analyzer that had a resolution bandwidth of 300 kHz
and video bandwidth of 300 Hz. This resulted in values
for AX+VS ;. All of the presented results were taken over
the sideband frequency range from 2 to 10 MHz and are
the average of ten consecutive traces. Every trace was
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more than 4.5 dB above the measurement dark noise
which was taken into account. We determined a3, directly
by blocking the horizontal modes and measuring the
power spectrum of the subtraction between the two
homodynes, this also gave a3, since the ratio a3/a?
was measured to equal 30.

Figure 2 shows our experimental measurements of
1(8,,8,) and I(S,, §5). The dashed lines indicate the
results a pair of coherent beams would produce. Both
traces are below this line throughout almost the entire
measurement range; this is an indication that the light is
in a nonclassical state. At low frequencies both traces
were degraded by noise introduced by the relaxation
oscillation of our laser. 1(S,, S;) shows polarization en-
tanglement, however as expected I(S;, S,) is far above
unity. The best entanglement was observed at 6.8 MHz
with I(8,, §3) = 0.49 which is well below unity.

By electronically adding or subtracting the Stokes
operator measurements with a gain g chosen to minimize
the resulting variance we observed a signature of the EPR
paradox for polarization states. In this case the product of
the conditional variances of S » and S 3 from one beam
after utilizing information gained through measurement
of the other must be less than the Heisenberg uncertainty
product (min,[((88,, * g88,,)°X(885, + ¢685,)%)] <
I[8S,, 6S3]|2/4) We observed a conditional variance
product of 0.77|[88,, 655]112/4.

Polarization entanglement has more degrees of free-
dom than quadrature entanglement because three observ-
ables, rather than two, are involved. In the following
section we consider the continuous variable situation
most analogous to single photon polarization entangle-
ment where the correlation is independent of the basis of
measurement, and demonstrate theoretically that all three
Stokes operators can be simultaneously entangled. We
extend the work of Ref. [5], and arrange the entanglement
such that Eqgs.. (5) are equal and the mean value of the
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FIG. 2 (color online). Experimental measurement of
(@) 1(8,,8,) and (b) I(8,, S;), values below unity indicate
entanglement. The dashed line is the corresponding measure-
ment inferred between two coherent beams.
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FIG. 3. Calculated polarization entanglement produced from
four pure quadrature squeezed beams with squeezed quadrature
variances of 0.1; axes normalized to 1 for a coherent state. The
top left figure represents the knowledge of beam y before any
measurement of beam x. (a), (b), and (c) represent the condi-
tional knowledge of beam y given measurements of 3‘1, 3‘2, and
S5, respectively, on beam x. If the conditional knowledge is
better than the dashed circles the state is entangled.

three Stokes operators are the same (¢S] = a?). This
leads to a} =[(+/3 —1)/2]a?, a} = [(\/—-i- 1)/2]a?,
0, =m/4+nm/2, and 0, = 7w/4 + n,m/2, where n,
and n, are integers. We assume that the two horizontally
polarized inputs, and the two vertically polarized inputs,
are quadrature entangled with the same degree of corre-
lation such that A2, Xz = A2, = A2, X. In this
configuration, Egs. (5) become |<8S 58 PN = a?, for all
i # j. To simultaneously minimize all three degrees of
Stokes operator inseparability [I(S",, S ;)] it is necessary
that 6, = —60, + nw. After making th1s assumption we
find that A)ZC+}S = \3a?A2, X for all i. Hence, in this
situation I(Sl, S ) are all 1dent1cal and the entanglement
is equivalent between any two Stokes operators. The
condition for entanglement can then be expressed as a
simple criterion on the quadrature entanglement between
the input beams

18, 8) < 11X+, 87) < 1/43, ®)

where I(X™,X7) = I(X},, X;;) = I(X{;, X;/). The factor
of 1/+/3 arises from the projection of the quadrature
properties onto a polarization basis in which the Stokes
vector is pointing at equal angle [ cos~!(1/+/3)] from all
three Stokes operator axes. In principle it is possible to
have all three Stokes operators perfectly entangled. In
other word, ideally the measurement of any Stokes op-
erator of one of the beams could allow the exact predic-
tion of that Stokes operator from the other beam (see
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Fig. 3). The experimental production of such a field is a
straightforward extension of the experiment reported
here, given the availability of four independent squeezed
beams. Maximal single photon polarization entanglement
enables tests of Bells inequality [1]. It has recently been
shown that continuous variable polarization entangle-
ment of the form discussed above can also exhibit Bell-
like correlations [4]. This entanglement resource would
also enable the demonstration of maximal continuous
variable polarization teleportation.

To conclude, we have presented the first generation
of continuous variable polarization entanglement. The
scheme presented transforms the well-understood quad-
rature entanglement to a polarization basis. The two
Stokes operators orthogonal to the Stokes vectors of the
polarization entangled beams easily fulfill a generalized
version of the inseparability criterion proposed by Duan
et al.. We have also demonstrated that in the limiting case
of our experimental configuration where @2 > 1 and
a% = 0 it is not possible to verify entanglement between
any other pair of Stokes operators. Finally, we have shown
that using four squeezed beams it is possible for all three
Stokes operators to be perfectly entangled, although with
a bound /3 times lower (stronger) than that for quadra-
ture entanglement.
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