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We consider diffusion-limited reactions Ai � Aj ! ; (1 � i < j � q) in d space dimensions. For
q > 2 and d � 2, we argue that the asymptotic density decay for such mutual annihilation processes
with equal rates and initial densities is the same as for single-species pair annihilation A� A ! ;. In
d � 1, however, particle segregation occurs for all q <1. The total density decays according to a q
dependent power law, ��t	 
 t�
�q	. Within a simplified version of the model 
�q	 � �q� 1	=2q can be
determined exactly. Our findings are supported through Monte Carlo simulations.
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by which establishes the segregation.
A large variety of systems in physics, chemistry, biol-
ogy, and ecology can be modeled in terms of diffusion-
limited reactions. This is because of their unifying
feature of being composed of mobile agents (‘‘particles’’)
which interact upon encounter. The traditional mean-field
rate equations for such systems apply only to homoge-
neous particle densities. However, in many such systems,
the spatial dimension d has one or more critical values
below which density fluctuations invalidate the rate equa-
tions and new phenomena appear. The fluctuations may
stem from, e.g., reaction-induced noise or initial state
randomness and typically dominate the system’s large-
scale, long-time behavior [1]. In order to extract the newly
emerging nonequilibrium behavior, more sophisticated
methods are needed: extensive numerical simulations
(for recent overviews, see Ref. [2]) along with powerful
analytical methods such as scaling approaches; mappings
to field theories followed by renormalization group; and
exact solutions (mostly limited to d � 1) [3].

The theory of annihilation reactions has two land-
marks, of which one, the single-species pair annihilation
reaction A� A ! ;, represents the simplest model case
[4]. The other one, the two-species annihilation A� B !
;, is considerably more subtle. It exhibits the remarkable
phenomenon that for d < 4 and for an initially random
particle distribution with equal densities �A�0	 � �B�0	,
the two-species segregate into pure A and pure B do-
mains, and the annihilations become localized within
sharp reaction fronts between the domains [5]. It is a
natural next step to ask for the long-time decay properties
of a system of q species that mutually annihilate accord-
ing to Ai � Aj ! ;, with 1 � i < j � q [6]. This ‘‘mu-
tual annihilation model’’ (MAM) is the subject of this
Letter [7]. A special case is the fully symmetric MAM,
characterized by equal reaction rates ij, equal diffusion
constants Di, and equal initial densities �i�0	.We find that
in d � 2 for all 2< q<1 the fully symmetric MAM
behaves as the single-species pair annihilation process:
the total density ��t	 �

P
i �i�t	 
 t�1. In contrast, in

d � 1 it exhibits species segregation and is characterized
0031-9007=02=89(25)=250601(4)$20.00 
��t	 
 t�
�q	; (1)

with a q dependent exponent given, within the approach
presented below, by 
�q	 � �q� 1	=2q. We note that, for
q ! 1, two particles of the same species meet with zero
probability; the distinction between the different species
then becomes irrelevant, and this model is equivalent to
the A� A ! ; reaction [8], with known 
�1	 � 1=2.

In order to set the stage for our arguments, we briefly
summarize the physics of the single- and two-species
annihilation processes. For A� A ! ; the mean-field
rate equation _��A � ��2

A with the solution �A�t	 

1=t provides a valid description only for d > 2. For
d < 2 nearby reactant pairs quickly annihilate, leaving
only well-separated particles, which in turn slows the
density decay down. These anticorrelations mimic a re-
pulsion between the particles; in a field theory represen-
tation of the associated master equation [9] they lead to a
downward renormalization of . As the diffusion propa-
gator remains unchanged, the perturbation series is read-
ily summed to all orders; one finds �A�t	 
 t�d=2 for d < 2
and �A�t	 
 t�1 lnt at the critical dimension dc � 2 [4].

For the two-species pair annihilation A� B ! ; the
rate equations read _��A=B � �AB�A�B. With equal initial
densities �A�0	 � �B�0	 they are solved again by
�A=B�t	 
 1=t; with �A�0	 > �B�0	, say, one obtains
�B�t	 
 exp�� AB��A�0	 � �B�0	t� for the minority
species, while the majority approaches a saturation den-
sity �A�1	. In order to establish the effects of spatial
fluctuations, it is crucial to notice that the density differ-
ence �A � �B remains conserved under the reactions; for
DA � DB it simply obeys the diffusion equation [10].
Initial density difference fluctuations therefore amplify
in time relative to the total density. As a consequence,
when �A�0	 � �B�0	, then for d < dc � 4 the system
segregates into domains and the density decay is slowed
down to �A=B�t	 
 t�d=4 [11]. The renormalization group
provides a firm basis [5] for these arguments, at least for
2 � d < 4: An effective field theory can be derived that
corresponds to the rate equations plus diffusion terms,
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FIG. 1. Monte Carlo results for the total density decay vs
time in the pair annihilation reactions A� A ! ; and Ai �
Aj ! ; with 1 � i < j � q (q � 2; 3; 4) for equal initial den-
sities in two dimensions. The plots for q � 2 depict ��t	= lnt;
the solid lines indicate the functions t�1 and t�1=2.

VOLUME 89, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 16 DECEMBER 2002
For unequal diffusion constants, this picture is not
qualitatively altered [12]; however, special initial condi-
tions may change it. Consider, e.g., particles that initially
alternate in one-dimensional space, ABAB . . . , and that
upon encounter react with probability one. The distinction
between A and B is then meaningless and the system is in
the A� A ! ; universality class [8]. For unbalanced
initial conditions, �A�0	 > �B�0	, stretched [13] rather
than simple exponential relaxation ensues for d < 2:
ln�B�t	 
 �td=2, whereas ln�B�t	 
 �t= lnt at dc � 2
[11]. If the two species are already segregated initially,
dc � 2 also is the sole critical dimension [14].

This summary helps us classify the possible scenarios
for the q-species MAM with arbitrary parameters ij, Di,
and �i�0	. Generically, we expect that after some cross-
over time only the least reactive and initially most nu-
merous species will have survived, resulting in an
effective two-species problem. After this reduction of q
to the effective value qeff � 2, the final asymptotic decay
laws will be those of the two-species system with unequal
initial densities discussed above. However, on special
submanifolds of parameter space and, in particular, in
the presence of symmetries, reduction to qeff � 2 may not
be possible and novel behavior may appear. That not all
symmetries lead to new behavior may be illustrated by the
cyclic reaction scheme A� B ! ;, B� C ! ;, C�
D ! ;, and D� A ! ;, all with equal rates and initial
densities. Here, we may readily identify the species
A � C and B � D, respectively, which takes us back to
the A� B ! ; reaction with �A�0	 � �B�0	. In this
Letter, we address the most prominent case that requires
special consideration and will, in fact, lead to novel
effects, namely, the fully symmetric MAM, in which
all q species are equivalent (whence qeff � q).

First, we notice that the renormalization of the anni-
hilation vertices in this q-species model is independent of
q and identical to that of the A� A ! ; reaction [5], with
dc � 2 [4]. Second, for q > 2 there exists no microscopic,
local conservation law. As a consequence, following the
arguments in Ref. [5], any memory of the initial state will
eventually become lost. This eliminates the segregation
mechanism at work in the q � 2 case. Next, we invoke
the mean-field rate equations and conclude that �i�t	 �
��t	=q
 1=t for d > 2 [15].

For d � 2, however, one needs to extract the correct
asymptotic scaling from the Callan-Symanzik renormal-
ization group equation. This requires an explicit compu-
tation of the density (a function of its initial value) as a
power series in the renormalized annihilation rate R. At
the critical dimension dc � 2, the renormalized rate flows
to zero logarithmically, R�t	 
 1= lnt, leaving merely the
tree diagram contributions that correspond to the solution
of the rate equation. Thus, we predict �i�t	 � ��t	=q

t�1 lnt in d � 2. The difficulty for d < 2 is to demonstrate
that for large values of the relevant operator ��0	 the
power series remains properly controlled [4]. For d < 2
this has proven elusive even for the two-species system
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[5]. Moreover, in one space dimension blockage effects of
(hard-core) particles have been found to often play a
crucial role in multispecies reaction-diffusion processes
[17]. We see that the q-species MAM, too, develops en-
tirely novel features when restricted to a linear chain:
The q species segregate into well-defined domains,
which remain stable because of the mutual annihilation
processes that prevent species mixing and the special one-
dimensional topological constraints that do not allow a
given species to interact with all others. As a conse-
quence, we find that for all 2 � q <1 that the total
density decays in d � 1 according to the power law (1).

We now present our numerical evidence in d � 1 and
d � 2 and then proceed with the analysis of the one-
dimensional model. In order to check the predicted uni-
versal decay law in two dimensions, we performed Monte
Carlo simulations on a 512� 512 square lattice with
hard-core particles. Starting from a full lattice with
random distribution of q equally abundant species (q �
2; 3; 4), we let the particles perform unbiased random
walks and annihilate with probability one upon encounter
with a different species. One Monte Carlo time step was
considered complete after N�t	 trials, with N�t	 the num-
ber of remaining particles at that instant. The results,
shown in Fig. 1, clearly support ��t	 
 t�1 lnt for the
q-species MAM with q � 3; 4; this is similar to the decay
law of the A� A ! ; reaction and in contradistinction to
��t	 
 t�1=2 for q � 2. We have also checked the purely
mean-field behavior for q � 3; 4 in a 503 cubic lattice [16].

In d � 1, however, simulations of the MAM with equal
initial densities yield decay laws that differ importantly
from both the A� A ! ; and A� B ! ; cases [8].
Figure 2 shows our Monte Carlo results for q � 2; 3; 4; 5
on a chain of 105 sites with periodic boundary conditions.
Evidently at long times ��t	 
 t�
�q	, where 
�q	 in-
creases with q from 
�2	 � 1=4 (the A� B ! ; value)
to 
�1	 � 1=2 (the A� A ! ; value).
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FIG. 2. Monte Carlo results for the density decay ��t	 vs t in
the pair annihilation reactions A� A ! ; and Ai � Aj ! ;
with 1 � i < j � q (q � 2; 3; 4; 5) and equal initial densities in
one dimension. The solid lines indicate the functions t�1=2 and
t�1=4.

VOLUME 89, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 16 DECEMBER 2002
In order to study the one-dimensional MAM, we sim-
plify it such as to retain only its barest essentials. This
simplified version, to be referred to as SMAM, arises
from the following considerations: The one-dimensional
system may at any time be decomposed into a sequence
of domains, each containing only a single particle spe-
cies. Owing to the diffusive nature of the process, the
typical domain size increases as L�t	 
 �Dt	1=2. Let us
assume the asymptotic decay law ��t	 
 �0��2

0Dt	�
,
where 
 remains to be determined. The average particle
number in a domain then scales as n�t	 � L�t	��t	 

��2

0Dt	�
�1=2, and phase segregation occurs only if 
<
1=2. Adjacent domains are separated by reaction zones, of
which there are 1=L�t	 per unit of length. Therefore, as
argued in Ref. [18] for the two-species case, the total
particle density decreases as _���t	 � ���t	=L�t	, with ��t	
the typical number of annihilations per unit of time in a
zone. The SMAM is now defined by the assertion that
fluctuations in the annihilation rate ��t	, whether in the
course of time or between different reaction zones, are
irrelevant and may be ignored; i.e., the particle content of
each domain, owing to the annihilations taking place at
both of its ends, decreases at the uniform rate 2��t	. To
complete the picture, we need to specify what happens
when a domain loses all its particles: Then, with proba-
bility 1=�q� 1	, the left and right neighboring domains
contain identical species and, consequently, fuse into a
single new domain; or, with the complementary proba-
bility �q� 2	=�q� 1	, they contain different particle
species and a new reaction zone appears.

The SMAM may be cast into an explicit algorithm. We
consider a one-dimensional lattice whose sites 1 � i �
N�0	 represent the domains of the original MAM. We
randomly select initial values n�0	i for the particle num-
bers in each domain. This random initial state evolves in
time via deterministic iterations. The �k� 1	th iteration
changes the total number of sites from N�k	 to N�k�1	 and
converts the integer set fn�k	i gN

�k	

i�1 to fn�k�1	
j gN

�k�1	

j�1 by suc-
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cessive application of the following four iteration steps:
(i) All n�k	i are reduced by 1. (ii) All sites that as a result
have become empty are eliminated and the other sites are
reconnected without reordering. (iii) Any two sites that as
a result have become neighbors are, with probability
1=�q� 1	, fused into a single site whose number variable
is the sum of the number variables of the fusing sites.
(iv) The remaining sites are relabeled with an index 1 �
j � N�k�1	. The kth iteration yields the total number of
domains N�k	 and the average particle number n�k	 per
domain. The particle density and the physical time follow
from ��k	=��0	 � N�k	n�k	=N�0	n�0	, and t�k	=t�0	 �
�N�0	=N�k	2, as N�t	 
 L�t	�1 
 t�1=2.

A key feature of the SMAM is that at every iteration
step k the numbers n�k	i are uncorrelated, for they descend
from disjoint sets of ‘‘ancestor’’ variables. Therefore, this
model obeys an exact closed set of equations, which we
now derive and analyze. Let us for the moment suppress
the iteration superscript �k	 and denote, preceding the kth
iteration, the total number of domains by N, the total
number of domains containing n particles by Mn, and
their relative abundance by fn � Mn=N. Primed symbols
indicate the corresponding quantities after the kth itera-
tion. In one iteration the total number N of domains
diminishes by M1 due to step (i). Step (iii) results in the
additional disappearance of domains; calculating their
exact number requires taking into account all instances
where two or more vanishing domains form a sequence of
nearest or next-nearest neighbors. After some combina-
torics, one finds [16] that N0 and N are related by N0 �
�1� f1	 �1� f1=�q� 1	N. By means of more elaborate
combinatorial analysis, one may express the final number
M0

n of n particle domains in terms of the initial Mm. The
intensive variables fn (n � 1; 2; . . . ) then obey the recur-
sion relation

f0n � �1� �q� 2	~ff1 �fn�1 � ~ff1Rn	; (2)

with the abbreviations ~ff1�f1=��q�1	�1�f1	 andRn�P
1
s�2

~ffs�2
1

P
1
m1;...;ms�1fm1�1 . . .fms�1�n;m1�����ms

. The term
of index s represents the creation of a domain of n
particles by simultaneous fusion of s domains. The fu-
sions with s�3 are clearly very model specific and one
would expect the essential physics to be embodied already
in the lowest-order nonlinearity. Indeed, by truncating
Eq. (2) after the s�2 term, one obtains an elegant
Boltzmann-like equation; the mathematical analysis be-
low is easier, however, if all terms are retained.

To find a solution to Eq. (2) we substitute an exponen-
tial distribution fn � ��1� �	n�1. The recursion then
yields a similar distribution, but with a new parameter
�0 related to � by �0 � ��1� �=�q� 1	. For this solution,
f1 � �, which may be substituted in the relation linking
N0 to N. Since n � 1=�, the total particle density obeys
�0=� � N0�=N�0 � 1� �. After restoring the iteration
indices, we obtain the pair of recursion relations

��k�1	 � ��k	�1� ��k	=�q� 1	; (3)
250601-3
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��k�1	 � ��k	�1� ��k	; (4)

to be solved with initial condition 0< ��0	 < 1 [e.g., for a
random initial distribution ��0	 � �q� 1	=q] and ��0	.
The solution of Eqs. (3) and (4) determines ��k	 and t�k	 �
t�0	���0	��0	=��k	��k	2; the desired function ��t	 is then
obtained by eliminating the index k.

We have been able to carry this through explicitly only
in an asymptotic expansion for large k. Whereas its lead-
ing order is readily evaluated, more attention is required
to deal with the subleading correction. By analyzing the
recursion relation (3) one finds that

��k	 �
q� 1

k

�
1�

lnck
k

�O

�
ln2k

k2

��
; (5)

where c is a function of ��0	=�q� 1	. Analyzing Eq. (4)
with (5) inserted then yields

��k	 ’
A��0	

kq�1

�
1� �q� 1	

lnck� �q� 2	=2
k

�
; (6)

with A � limk!1 kq�1
Q

k�1
‘�0�1� ��‘	. Expressing t�k	 as a

function of k and inverting leads to k�t	 ’ �Ct	1=2q �
�ln�Ct	 � 2q lnc� �q� 1	�q� 2	=2q with C � A2�q�
1	2=��0	2t�0	. Finally, upon substitution in Eq. (6),

��t	 ’ A��0	

�
�Ct	�
�q	 �

�q� 1	�q� 2	

2q
�Ct	�1=2

�
; (7)

with 
�q	 � 1=2� 1=2q < 1=2, confirming species seg-
regation self-consistently and establishing Eq. (1) for the
leading density decay of the SMAM. For q � 2 we re-
cover 
�2	 � 1=4, and the limit q ! 1 gives correctly

�1	 � 1=2. Notice that the term with log�Ct	 and the
dependence on c have canceled out in Eq. (7). The next-
to-leading behavior is identical with the power law decay
for the A� A ! ; reaction in d � 1. Its relative ampli-
tude increases with q; thus, it becomes numerically diffi-
cult to distinguish it from the leading term. We cannot
establish that the correction term in Eq. (7) has the
same relevance for the original MAM as we believe the
leading-order term does; in the accessible time window of
the MAM simulations, our data are best described by an
effective exponent 
eff , which reflects a sizeable next-to-
leading correction [16]. Current large-scale simulations
by Ben-Avraham and Zhong indeed confirm unambigu-
ously both our leading density decay law (1) as well as the
power t�1=2 for the first correction term [19].

In this one-dimensional system, the reaction zone
width ‘�t	 is just equal to the typical interparticle dis-
tance between representatives of different species. The
reaction rate ��t	 is just the inverse of the time needed to
diffuse over this length [18]; hence, ��t	 
D=‘�t	2.
Combining this with _�� � ��=L and the known time
dependences of L�t	 and ��t	, we find ‘�t	2 

��2
0 ��2

0Dt	
�q	�1=2, whence

‘�t	 
 t�q	; (8)
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with �q	 � �2q� 1	=4q. For q � 2 this reproduces the
known result �2	 � 3=8 [18]. The value �1	 � 1=2
indicates that for infinitely many species the reaction
zones grow as fast as the typical domain size, and, hence,
there can be no segregation. How to aptly take into
account the one-dimensional topological restrictions in
a field-theoretic description remains an open issue.
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