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The Feynman Propagator from a Single Path
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We show that it is possible to construct the Feynman propagator for a free particle in one dimension,
without quantization, from a single continuous space-time path.
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ceptually ‘‘expensive,’’ allowing this feature explicitly
provides the physical mechanism which creates the phase

function, enforces the quantization. It also partitions the
sum into four components, each of which is real, i.e.,
The Feynman path-integral formulation of quantum
mechanics [1,2] is well known for its utility and intuitive
appeal. An interesting history of its development may be
found in the article and book by Schweber [3,4]. Al-
though the mathematics of the path integral encourages us
to think of the paths in terms of real space-time trajecto-
ries, and there have been very interesting proposals for
testing the reality of the paths [5–7], the formulation
itself falls short of providing a full microscopic basis
for quantum mechanics. This is in contrast to the
Wiener integral which is an abstraction of the micro-
scopic model (Brownian motion) supporting the diffu-
sion equation. In particular, Wiener paths are known to
approximate actual physical trajectories of diffusing par-
ticles, whereas the relation between Feynman paths and
physical particles is not so direct.

There are two main barriers to an association between
Feynman paths and any physical trajectory of a real
particle. First of all there is a many-to-one correspond-
ence between Feynman paths and the particle being de-
scribed. Interference effects require this nonuniqueness
since individual trajectories carry variable phase but not
variable amplitude in the propagator [8]. Thus a physical
particle cannot simply traverse a single Feynman path
while propagating in space-time.

A second impediment is that the phase associated with
Feynman paths is a wave concept grafted onto the par-
ticle paradigm. The physical origin of phase is unknown.
Phase arises in conventional quantum mechanics through
formal quantization and although the appearance of phase
in the path-integral context is more subtle, there is noth-
ing in the classical particle paradigm to motivate its
presence.

In this Letter, we show that in the particular case of the
Feynman chessboard model, one can modify the formu-
lation so that the propagator in a space-time region can be
constructed by a single continuous space-time curve. This
is done by allowing particles to have trajectories with
reversed time segments. Although this might seem con-
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of a wave function without invoking an analytic continu-
ation. The propagator appears naturally as a pattern
created by the (space-time) plane-filling path of a
single point-particle. In the new formulation, the many-
to-one aspect of Feynman paths is circumvented by sew-
ing together an ensemble of chessboard paths into a
single curve in such a way that formal quantization is
unnecessary.

The chessboard or checkerboard model [2,9,10] ex-
tended Feynman’s path-integral approach to the relativ-
istic domain in order to incorporate electron spin. In this
model, particles hop with speed �c on a discrete space-
time lattice with spacing �. Choosing units in which
c � 1, paths consist of diagonal segments resembling
forward bishop’s moves in chess [Fig. 1(a)].

A lattice approximation to the Kernel K�b; a� for a
particle to propagate from position a at time ta to position
b at time tb is given by Feynman to be

K�b; a� �
X
R

N�R��i�m�R; (1)

where the sum is over all chessboard paths and N�R� is the
number of paths with R corners. Here m is the mass of the
particle in units where �h is one. In terms of the paths
themselves, the expected distance between corners is 1=m
[10]. If we distinguish between the two directions in
space, K is a 2� 2 matrix which converges to the Dirac
propagator in the continuum limit [9]. The prescription
given in (1) can be modified somewhat for convenience.
Gersch, who established the relation between the chess-
board model and the one-dimensional Ising model,
pointed out that the nonrelativistic limit is more direct
if i is replaced by �i in (1). Kull and Treumann [11] also
noted that paths fixed at both ends have �R� 1� degrees of
freedom, so the R in (1) may be replaced by �R� 1�
without interfering with the continuum limit.

Equation (1) is a formal analytic continuation (quanti-
zation) of a classical partition function. The i in the sum,
which replaces a real positive weight in the partition
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FIG. 1 (color online). (a) A Feynman chessboard trajectory.
The x axis is horizontal and the t axis vertical. The sign of the
contribution changes every two corners in the trajectory. This is
indicated in the figure by the different linewidths in the differ-
ent segments. (b) The same chessboard trajectory with its
orthogonal twin. This pair can be viewed as two oscillating
chessboard paths which never cross, or as a single entwined
loop which crosses itself frequently. The latter view explains
the phase shift of � for every two corners in the original
chessboard paths.

VOLUME 89, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 16 DECEMBER 2002
K�b; a� �

" X
R�0;4;...
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X
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N�R���m�R

#

� i

" X
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N�R���m�R �
X

R�3;7;...

N�R���m�R

#

��R � i�I: (2)

Each of the above sums is, by itself, a partition function
for a class of random walks in which the term ��m�R is
just a Boltzman weight. The interference of alternative
paths is a result of the two subtractions in (2). If we
replace the minus signs in (2) by plus signs, the resulting
propagator is related to the telegraph equation, which in
turn becomes the diffusion equation in the appropriate
‘‘nonrelativistic’’ limit [12], the remaining i then being
superfluous. The underlying stochastic model for this
case has been studied by Kac [13] and its relation to the
Dirac equation through analytic continuation has been
discussed by Gaveau et al. [14] and Jacobson and
Schulman [10]. The i which appears in (2) just expresses
K as a particularly convenient linear combination of the
real amplitudes �R=I, however the actual interference
characteristic of quantization is apparent in the oscilla-
tory nature of the �.

Since it is the occurrence of the minus signs in the
propagator which is essential for interference, we look for
a physical basis for the subtractions. Regarding Fig. 1(a)
we can encode the counting and subtractions involved in
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(2) by coloring the trajectories with two colors, say, blue
(thick lines in figure) and red (thin in figure). If the
trajectories start out blue, they change to red at the second
corner, blue at the fourth, and so on. The sign of the
contribution of a trajectory is then determined by its color
at the space-time point in question, � for blue, � for red.
Red contributions behave like antiparticles in that they
reduce the contribution of the particles, providing inter-
ference effects. The ensemble of such colored paths be-
tween a and b provides the appropriate contribution to a
quantum propagator, but is not explicitly traversed as a
single path. What we would like to do is to sew together
the chessboard paths in such a way that they may be
traversed by a single path which also provides the alter-
nating colors of the trajectories through the direction in
time of the traversal. To this end let tR > tb be a reversal
time which will represent a rough upper bound in t for the
generation of a propagator. We will use a small region in
t � tR to join chessboard paths without appealing to the
stochastic process. Now note from Fig. 1(b) that each
chessboard path has an orthogonal twin.

The orthogonal twin starts from the origin moving in
the opposite direction with the opposite color. It moves
the same distance as the second leg of its twin’s path,
reverses direction, and moves the same distance as its
twin’s first leg. Twins meet at every second corner where
they change both color and direction. For paths with an
odd number of corners, this is repeated until the twins
meet at t � tR. (For paths with an even number of corners,
see below.) The orthogonal twin is also a chessboard path
with coloring 180	 out of phase with the original.

Now consider the following ‘‘entwined’’ traversal of
the two paths. Follow the first twin to the first meeting,
the second to the second meeting, and so on. This path is
blue from the origin to the last meeting. From there
reverse the direction in t by proceeding down the remain-
ing red sections. This brings you back to the origin on an
entirely red path. This choice of traversal gives a meaning
to the original Feynman coloring; the coloring corre-
sponds to the direction in time of an entwined path
traversal. Blue corresponds to forward in t, red to back-
wards. Entwined pairs also conserve charge if we asso-
ciate opposite charges with reversed time segments.

Each chessboard trajectory to tR has a unique orthogo-
nal twin. Let PR be an arbitrary n-step R-cornered chess-
board path. Write PR � ��1; �2; . . . ; �n� where �k � �1
according to the direction of the kth step of the path. If we
define a ‘‘leg’’ as a set of contiguous steps all in the same
direction and bounded by either corners or ends of a path
(i.e., a domain in the Ising analogy), then if R is odd, we
may write PR � �l1; l2; . . . ; lR�1� with the understanding
that l1 stands for the first leg, l2 stands for the second, and
so on. If R is even then the path ends with the last link in
the same direction as the first link. In order to join the
path to an orthogonal twin we need to add a final leg in
the opposite direction. There are many ways to do this.
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FIG. 2 (color online). The sum of propagator components,
�R � �I along the x axis, from the chessboard model (curve)
and the single path simulation (points) at t � 15 steps from the
origin.
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For uniqueness we add a final leg the same length as the
original last leg but in the opposite direction. (This
modifies the distribution of the last corner of the orthogo-
nal twin, but does not affect either twin below the last
intersection before tR. In terms of the resulting propaga-
tor, this results in an error which decays exponentially in
jt� tRj and is small provided tR is greater than a few
Compton time steps from t.) If R is even, we thus extend
the n-step path to PR � �l1; l2; . . . ; lR�1;�lR�1�, where
�lR�1 is lR�1 with the signs of all the component �
changed.We may then define the orthogonal twin to PR as

Py
R �

8>><
>>:

��l1; l1� R � 0;
�l2; l1� R � 1;

�l2; l1; . . . ; lR; lR�1;�lR�1; lR�1� R � 2; 4; . . . ;
�l2; l1; l4; l3; . . . ; lR�1; lR� R � 3; 5; . . . :

(3)

Because Py
R is a unique permutation of PR, the ensemble,

EF, of all extended n-step paths PR from the origin is the
same as the ensemble of all paths Py

R from the origin.
Furthermore, this is the same as the ensemble of paths of
the form ��1; �2; . . . ; �n� combined with all orthogonal
twins. Thus we may cover all paths in EF, with the correct
chessboard coloring, just by traversing all entwined pairs.
This may be done through a single continuous (in the
sense of the lattice) path, since all entwined loops inter-
sect at the origin. Furthermore, entwined pairs fixed at
the origin and at time tR have the same number of degrees
of freedom as their individual component chessboard
paths (i.e., R� 1) and each pair may be given the statis-
tical weight ��m�R�1 which correctly weights the compo-
nent chessboard trajectories to the last twin intersection
before tR. Thus the following classical stochastic process
gives rise to a properly weighted chessboard ensemble of
colored paths for a region of space-time t < tR. Start a
random walk at the origin and allow the walker to choose
entwined paths out to tR according to the number of free
corners, either in the entwined path or one of the pairs.
The walker traverses the entwined path as above so as to
maintain both the chessboard and time-sense coloring.
The walker ends up at the origin at the end of the traversal
and repeats the process. The space-time lattice records the
net number of traversals in the �t direction as the walker
passes by, registering a plus one for a positive traversal
and a minus one for a negative traversal, thus accumulat-
ing positive and negative integers. Provided tR � t is
greater than a few Compton lengths, the traversal weight-
ing ensures that the constituent chessboard paths have the
correct expected weight, and the ergodic nature of the
walks ensures that, with enough loops, you can get as
close as you like to a uniform coverage of the ensemble.

If we allow a walker to cycle through the entwined
paths according to the above prescription, we can imme-
diately write down the expected net ‘‘charge’’ accumu-
lated on the lattice. Referring to the kernel in (1), we can
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define the four components of the 2� 2 matrix as K�n�1

where the subscripts refer to the end and beginning direc-
tions, respectively. If the walker, starting in the �x
direction, loops over N entwined pairs and �x; t� is a
lattice point within the light cone with t < tR then the
contribution to the �x-component of the net charge is
proportional to �� � N�K���x; t� � K���x; t�. This is
because an entwined loop corresponds to two forward
chessboard paths, one originating from the origin with a
positive, blue first leg (K�� contribution) and the second
from a negative red first leg ( � K�� contribution).
Similarly the �x component at �x; t� is proportional to
�� � N�K���x; t� � K���x; t�. These densities have the
physical interpretation as particle densities which may be
either positive or negative depending on the predomi-
nance of entwined trajectories in plus or minus t direc-
tions. �� is positive in ��x;�t�-rich areas and �� is
positive in ��x;�t�-rich areas. Note that �� � �� is
proportional to the sum of the real and imaginary part
of the Feynman propagator �R � �I (Gersch convention
for the sign of i).

Previous versions of this model [15–17] which used
time-reversed segments to generate phase, showed that
the paradigm worked in the continuum limit. However, it
was only in the continuum limit that the Dirac propagator
could be extracted without being swamped by the natural
entropy of the stochastic process, the continuum limit
also being a mean-field limit. Computer simulations on
lattices then failed to extract the propagator unless sto-
chastic fluctuations were completely surpressed, and the
Feynman ensemble covered exactly. Using bound pairs in
this model alleviates this problem and allows the propa-
gator to be simulated on a lattice. Qualitatively, the bound
pairs provide a microscopic ‘‘detailed balance’’ which
ensures that statistical fluctuations in the coverage of
the ensemble do not destroy macroscopic reversibility.

Figure 2 shows an example of a lattice simulation,
where the sum of the real and imaginary parts of the
propagator, �R � �I, at fixed t, is plotted versus x. The
250403-3
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expected results from the chessboard model are plotted
(continuous curve) at the same lattice resolution as the
results of a simulation with a single path which loops over
the lattice 108 times. In the figure, t is 15 steps from the
origin, with an average of two steps between corners or a
probability of 1=2 for a direction change at each step. At
smaller values of t, this simulation and the chessboard
model are indistinguishable on the scale of the figure, at
larger values of t the single path gives sparser coverage of
the chessboard ensemble and the scatter increases. The
individual real and imaginary parts of the propagator
may be calculated using the symmetry of the solutions,
or by recording the �� in two components to separate
contributions from the original chessboard path and its
orthogonal twin.

Although we do not know how much of the above can
survive inclusion of an external field and/or extension to
three space dimensions, we do think the result reveals
several qualitatively appealing features of the simplest
case of a free particle in one dimension. First, the
Feynman propagator has an independent existence as an
expected net charge over an ensemble of entwined paths
which can be joined into a single trajectory. In this con-
text, the propagator has an underlying classical stochastic
model which is in effect self-quantizing and produces real
densities in place of amplitudes.

A second feature is that the above model provides a
bridge between two distinct views of quantum mechanics
in this case. Regarding Fig. 1(b), we may view the two
trajectories in three ways. We can consider them as two
separate chessboard trajectories, colored according to
Feynman’s corner rule. An ensemble of such trajectories
builds a quantum propagator as a sum-over-histories. This
is the conventional view.

A second picture is to note that an entwined pair forms
a chain of creation/annihilation events. An ensemble of
these would provide a vacuum of virtual particles upon
which an excitation could presumably propagate. This is
close to a field theory perspective.

The third picture, which is suggested by the new for-
mulation, is the continuous loop in space-time, colored
according to direction of motion in time. In this picture,
the phase of the wave function, Zitterbewegung, and the
presence of virtual particles are all manifestations of a
single path which forms entwined space-time loops. In
many respects, this picture is an implementation of the
original Wheeler-Feynman one-electron-universe [4],
scaled down to provide a single-path electron. Here the
multiple tracks in space-time create a ‘‘Dirac sea’’ rather
than the multitude of electrons in the universe.
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To conclude, in demonstrating that entwined paths
produce the retarded propagator without analytic con-
tinuation, we have reversed the usual relationship be-
tween geometry and quantization. In the entwined
model, space-time geometry is fundamental and ‘‘quan-
tization’’ is a derived feature. If this generalizes, it may
prove useful in situations where conventional quantiza-
tion is problematic.

An interesting next step, besides exploring generaliza-
tions, will be to define measurement in entwined systems
in terms of localization of the single particle, the aim
being to see if a traversal scheme could be found which
would imply the Born postulate.
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