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Expansion of an Interacting Fermi Gas
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We study the expansion of a dilute ultracold sample of fermions initially trapped in an anisotropic
harmonic trap. The expansion of the cloud provides valuable information about the state of the system
and the role of interactions. In particular, the time evolution of the deformation of the expanding cloud
behaves quite differently depending on whether the system is in the normal or in the superfluid phase.
For the superfluid phase, we predict an inversion of the deformation of the sample, similar to what
happens with Bose-Einstein condensates. Vice versa, in the normal phase, the inversion of the aspect
ratio is never achieved, if the mean field interaction is attractive and collisions are negligible.
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theoretical approaches. For the normal phase, we use the
formalism of the Landau-Vlasov equations, while in the �‘e�n� � Vho�r� � �; (3)
Since the first experiments on trapped Bose-Einstein
condensates, the imaging of the expanding cloud, follow-
ing the sudden switching off of the confining potential,
has provided crucial information on the novel features
exhibited by atomic gases in conditions of quantum de-
generacy. These include, in particular, the bimodal struc-
ture of an expanding Bose gas at finite temperature and
the anisotropy of the asymptotic profile of the condensate
[1,2]. In the Thomas-Fermi limit, where the Gross-
Pitaevskii equations coincide with the hydrodynamic
theory of superfluids, the anisotropy of the expanded
gas reflects the anisotropy of the pressure force which is
stronger in the direction of tighter confinement [3]. The
predictions of the hydrodynamic equations and of the
consequent scaling behavior exhibited by Bose-Einstein
condensates during the expansion have been investigated
by several authors ([4–6]), providing excellent agreement
with experiments [7,8] and pointing out the difference
with respect to the expansion of a noncondensed gas. In
the latter case, in the collisionless regime, the density
profile approaches an isotropic shape, independent of the
initial deformation of the gas.

In this Letter, we study the problem of the expansion of
an ultracold sample of fermions initially trapped in an
anisotropic harmonic trap. We will show that also in the
case of fermions the expansion of the gas provides
valuable information about the state of the system and
the role of interactions. We will consider a gas of atoms
interacting with attractive forces. This is a natural re-
quirement for the realization of Cooper pairs and, hence,
for the achievement of the superfluid phase [9]. Such
interactions are naturally present in some fermionic spe-
cies such as 6Li and can otherwise be obtained by chang-
ing the scattering length profiting of the presence of a
Feshbach resonance.

The description of the expansion of a cold fermionic
gas in the normal and superfluid phase requires different
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superfluid phase we study the expansion using the hydro-
dynamic theory of superfluids.

We consider the case of two different fermionic states,
hereafter called 1 and 2, initially confined in a harmonic
trap. We assume that the two species are present in the
same amount and feel the same trapping potential, so that
the densities of the two species are equal at equilibrium
as well as during the expansion: n1�r; t� � n2�r; t� �
n�r; t�=2. The trapping potential will be chosen of har-
monic type,

Vho �
1
2m�!2

?x
2 �!2

?y
2 �!2

zz
2�; (1)

describing a cylindrically symmetric trap with deforma-
tion  � !z=!?. The interaction between the two fer-
mionic species is fixed by the coupling constant
g � 4� �h2a=m, where a is the s-wave scattering length.

In this paper we will use the equation of state,

�‘e�n� �
�h2

2m
�3�2n�2=3 �

1

2
gn; (2)

to describe the uniform phase of the gas where the first
term is the kinetic energy evaluated at zero temperature
while the second one is the interaction energy evaluated in
the mean field approximation. Equation (2) neglects the
effects of correlations which become important for large
values of the scattering length and affect in a different
way the equation of state of the normal and superfluid
phase. The formalism developed in this paper can be
easily generalized to include a more accurate description
of the equation of state. It is, however, worth pointing out
that, even using the same equation of state for the normal
and superfluid phases, the expansion of the gas behaves
quite differently in the two cases being described by
different kinetic equations. In the presence of the external
potential (1), the equilibrium condition in the local den-
sity approximation is determined by the equation
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FIG. 1. Ratio � � Eint=Eho as a function of the universal
parameter aN1=6=aho calculated with the mean field functional
(9) up to the collapse point aN1=6=aho � �0:61 (full line); the
dashed line is the linear prediction ([10]).
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where � is the chemical potential of the sample fixed by
the normalization condition.

The relevant parameter characterizing the interaction
in the fermionic system is the ratio,

� �
Eint

Eho
; (4)

between the interaction energy,

Eint �
g
4

Z
n2�r�d3r; (5)

and the oscillator energy,

Eho �
Z

Vho�r�n�r�d3r: (6)

In the perturbative regime the integrals (5) and (6) can be
evaluated using the noninteracting density profile which,
in Thomas-Fermi approximation (3), takes the simple
form,

n�r� �
1

3�2

�
2m

�h2

�
3=2

��� Vho�r��3=2: (7)

After integration of (5) and (6), one finds [10]

Eint

Eho
� 0:5

N1=6a
aho

� 0:3akF; (8)

where kF � �3�2n�0��1=3 is the Fermi momentum evalu-
ated at the central value of the density. In order to go
beyond the perturbative regime, one determines numeri-
cally the ground state density by minimizing the energy
of the system,

E �
3�3�2�2=3
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�h2

2m
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Vho�r�n�r�d3r

�
g
4

Z
n2�r�d3r: (9)

One easily finds that the equilibrium value of the ratio
Eint=Eho depends on the dimensionless combination
aN1=6=aho also in the nonperturbative regime [9], as
reported in Fig. 1. Using (9), one predicts that the com-
pressibility of the gas becomes negative in the center of
the trap if jajN1=6=aho > 0:61. For large values of jaj, the
resulting predictions should be, however, taken with care
since the functional (9) ignores correlation effects beyond
mean field.

Let us now discuss the expansion of a fermionic sample
trapped in an elongated harmonic trap ( < 1). We de-
scribe first the expansion of the normal fluid and after-
wards the one of the superfluid. In the ideal case, using the
semiclassical description, one finds that the ratio of the
square radii evolves according to the classical law,

hr2?i
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?

: (10)

The ratio (10) approaches unity for large times, reflecting
the isotropy of the momentum distribution. This result
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ignores the effects of collisions which are, however, ex-
pected to play a minor role at low temperature, due to
Pauli blocking, unless the scattering length is very large.

In order to take into account the effects of the inter-
actions, we consider the mean field description based on
the Landau-Vlasov equation,
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� 0; (11)

where f�r; v; t� is the distribution function, and n �R
fd3v is the atomic density. Equation (11) describes the

dynamics of a normal weakly interacting gas in the
collisionless regime.

An approximate solution of Eq. (11) is obtained by
making a scaling ansatz for the distribution function,

f�r; v; t� � f0�~rr�t�; ~vv�t��; (12)

where f0 is the equilibrium distribution, ~rri�t� � ri=bi and
~vvi�t� � bivi � _bbiri. Under the scaling assumption, the
velocity field u�r; t� �

R
vfd3v=n takes the simple form

ui � _bbiri=bi. This ansatz has been recently used by
Guéry-Odelin [11] to investigate the effect of the inter-
action on the collective oscillation of a classical gas in the
collisionless regime.

The equations for the scaling parameters bi can be
obtained by multiplying (11) by ~rri and ~vvi and integrating
in phase space. Making use of the equilibrium properties
of the distribution function, after some straightforward
algebra one finds

�bbi �!2
i bi �

!2
i

b3i
�

3

2
�!2

i

�
1

b3i
�

1

bi
Q

j bj

�
� 0; (13)

where � is the ratio (4) evaluated at equilibrium. The
second term in (13) describes the restoring force of the
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FIG. 2. Aspect ratio as a function of time for the expansion of
the normal (lower curves) and superfluid phase (upper curves)
for  � 0:1 and two different values of the parameter �: � � 0
(full line) and � � �0:4 (dashed line).
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FIG. 3. Aspect ratio as a function of time for the expansion of
the normal (lower curves) and superfluid phase (upper curves)
for  � 0:3 and different values of the parameters �: � � 0
(full line) and � � �0:4 (dashed line).

VOLUME 89, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 16 DECEMBER 2002
external oscillator potential, the third one originates from
the kinetic energy, while the last term, linear in �,
accounts for the effects of mean field interaction.

An immediate application of Eq. (13) concerns the
study of the oscillations of the gas. By linearizing the
equations around equilibrium (bi � 1) one finds, in
the presence of isotropic harmonic trapping (!? � !z �
!0), the following result:

!M � 2!0

��������������������
1� 3�=8

q
; !Q � 2!0

��������������������
1� 3�=4

q
;

(14)

for the frequencies of the monopole and quadrupole os-
cillations which coincide with the results already derived
in [10] using a sum-rule approach.

The equations describing the expansion are obtained
by suddenly removing the second term of Eq. (13), origi-
nating from the trapping potential. In the study of the
expansion, we are interested in the case of anisotropic
trapping. In particular, we will consider the case of cigar
shaped traps. For high deformations ( � !z=!?  1)
Eq. (13) yields the asymptotic result,

b2z ! !2
z�1�

3
2��t

2; (15)

b2? ! !2
?t

2; (16)

showing that the aspect ratio,

R?�t�
Rz�t�

!
1��������������������

1� 3�=2
p ; (17)

approaches a value smaller than one if the interaction is
attractive (�< 0). In Eq. (17), R? and Rz are the radii
where the atomic density vanishes (Thomas-Fermi radii).

The results of the numeric integration of the equations
of motion (13) are reported in Figs. 2 and 3 as a function
of time for the choices � � 0 and � � �0:4.

We address now the problem of the expansion of a
superfluid Fermi gas. As already anticipated, we will
make use of the hydrodynamic equations of superfluids.
Those equations have been already used to describe the
collective oscillations of a superfluid trapped Fermi gas
[12] including its rotational behavior [13]. The hydro-
dynamic equations are applicable if the healing length
is much smaller than the size of the sample, which
implies that the energy gap should be larger than the
oscillator energies �h!z, �h!?. This nontrivial condition
implies that the whole system behaves similar to super-
fluid. Furthermore, the hydrodynamic equations are ap-
plicable up to excitation energies of the order of the
energy gap. In the problem of the expansion, it is crucial
that the system remains superfluid in the first instants
when the hydrodynamic forces provide the relevant ac-
celeration to the expanding atoms. One expects that this
condition be satisfied if the initial temperature is small
enough.
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The hydrodynamic description is based on the equation
of continuity,

@
@t
n�r�nu� � 0; (18)

and on the Euler equation,

m
@
@t

u�r

	
�‘e�n� � Vho�r� �

1

2
mu2



� 0; (19)

where �‘e�n� is the chemical potential of a uniform gas
calculated at the density n and u is the velocity field.

If the equation of state is a power law (�‘e / n)), these
equations admit the simple scaling solution,
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n�ri; t� �
1Q
j bj

n0
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ri
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�
; (20)

ui�ri; t� �
_bbi

bi
ri; (21)

and the Thomas-Fermi radii evolve according to the law
Ri�t� � Ri�0�bi�t�. In this case, it is immediate to show
that, during the expansion, the scaling parameters obey
the coupled differential equations,

�bbi �
!2

i

�bxbybz�
)bi

; (22)

which reduce to

�bbz �
!2

z

b2)?
; and �bb? �

!2
?

b�2)�1�
?

: (23)

for highly elongated configurations (  1). For ) � 1
(corresponding to a Bose-Einstein condensed gas), the
equation for the radial motion is integrable analytically
and one finds the result b?�t� � �1�!2

?t
2�1=2 [5].

To describe the expansion of superfluid Fermi gas, we
will use the same equation of state (2) as for the normal
phase. The case of a very dilute gas is also described by a
power law with ) � 2=3 [first term in (2)]. For  � 0:1
and 0:3, the solution is given by the full upper line in
Figs. 2 and 3 respectively, which show that the deforma-
tion of the trap is inverted in time and the aspect ratio
R?=Rz reaches asymptotically a value significantly larger
than 1 [14]. Superfluidity has, hence, the effect of dis-
tributing the release energy in a strongly asymmetric way
along the axial and radial directions. It is worth noticing
that the same scaling equations (22), with ) � 2=3, are
obtained for a classic gas in the collisional regime [15].

In the more general case (2), a useful approximation to
the solution of the hydrodynamic equations, based on the
scaling ansatz (20) and (21) is obtained by multiplying
the Euler’s equation (19) by rin�r� and integrating over
the spatial coordinates. Using the equation of state (2),
one finally obtains the following set of differential equa-
tions,

�bbi �!2
i bi �

!2
i

bi

1

�
Q

i bi�
2=3

�
3

2
�
!2

i

bi

�
1

�
Q

i bi�
2=3

�
1Q
i bi

�

� 0; (24)

with � defined by Eq. (4). Equation (24) differs from the
analogous Eq. (13) holding in the normal phase. By
linearizing Eq. (24) around bi � 1 one gets, in the case
of a spherical trap, the result !Q �

���
2

p
!0 for the quadru-

pole frequency [12], which, contrary to (14), is indepen-
dent of the interaction term in �.

The predictions of Eq. (24) for the expansion of the gas
are reported in Figs. 2,3 and show that the inclusion of the
interaction term in the equation of state affects the ex-
pansion of the superfluid only in a minor way.
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In conclusion, we have shown that the expansion of a
superfluid Fermi gas, being governed by the equations of
hydrodynamics, differs in a crucial way from the one of a
normal gas in the collisionless regime. From a theoretical
point of view, several questions remain to be investigated:
among them, the effect of large scattering lengths [16] on
the equation of state and the role of collisions which,
under certain conditions, might give rise to a hydrody-
namic regime, and, hence, to anisotropic expansion, also
in the normal phase. Finally, one should develop the
formalism at finite temperature where both the normal
and superfluid components are present. The resulting bi-
modal structure in the expanding cloud is expected to
be affected by the transfer of atoms from the superfluid
to the normal component during the first stage of the
expansion.
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