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Exact solvability is claimed for nonlinear replica � models derived in the context of random matrix
theories. Contrary to other approaches reported in the literature, the framework outlined does not rely
on traditional ‘‘replica symmetry breaking’’ but rests on a previously unnoticed exact relation between
replica partition functions and Painlevé transcendents. While expected to be applicable to matrix
models of arbitrary symmetries, the method is used to treat fermionic replicas for the Gaussian unitary
ensemble (GUE), chiral GUE (symmetry classes A and AIII in Cartan classification) and Ginibre’s
ensemble of complex non-Hermitian random matrices. Further applications are briefly discussed.
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jnj 2 N, the validity of the resulting representation of the needed for further discussion.
Replica field theories are notoriously known for subtle-
ties involved in performing the replica limit, n! 0,
devised [1] to carve a physical observable of interest out
of the ‘‘annealed’’ average

Zn��1; . . . ; �p� �

*Yp
k�1

detn��k �H �

+
(1)

often called the replica partition function; generically,
Im�k � 0. The average h� � �i runs over an ensemble of
stochastic Hamiltonians H which, throughout this
Letter, will be modeled by random matrices [2] of pre-
scribed symmetries. Given (1), spectral properties of H
can be obtained from the p-point Green’s function
G��1; . . . ; �p� � h

Qp
k�1 tr��k �H ��1i for which the rep-

lica limit reads

G��1; . . . ; �p� � lim
n!0

1

np
@p

@�1 � � � @�p
Zn��1; . . . ; �p�: (2)

Equation (2) assumes mutual commutativity of the fol-
lowing operations: disorder averaging, differentiation, the
replica limit, and a thermodynamic limit, if necessary.
Being an undoubtedly correct mathematical identity
under the conditions of commutativity, the recipe (2) may
become a pitfall [3,4] if applied unconsciously in the
context of replica field theories.

A difficulty lurks behind a field theoretic prescription to
compute the partition function (1). Sketchy, an original
random system is substituted by its jnj identical non-
interacting copies, or replicas. Each copy, exemplified
by a single determinant det���H �, is represented by a
functional integral over an auxiliary field which is either
bosonic or fermionic by nature depending on the sign of
n. Exponentiating a random Hamiltonian H , such a
representation facilitates a nonperturbative averaging
over an ensemble of stochastic Hamiltonians in (1) and
eventually results in effective field theories defined on
either a compact [5] (n > 0) or a noncompact [6] (n < 0)
manifold.

The point to make is this: since the number jnj of
functional field integrals involved is a positive integer,
0031-9007=02=89(25)=250201(4)$20.00 
replica partition function Zn is restricted to jnj 2 N, too.
Unfortunately, this is not enough to perform the replica
limit (2) determined by the behavior of Zn in a close
vicinity of n � 0. Therefore, a procedure of analytic
continuation of Zn away from jnj positive integers is
called for.

Kamenev-Mézard’s prescription.—To keep the discus-
sion concrete, let us reconsider a problem [7] of evaluation
of the one-point Green’s function G��� for random ma-
trices with Gaussian distributed entries. In what follows,
we assume the Hamiltonian H to be drawn from the
Gaussian unitary ensemble (GUEN) [2] specified by the
probability density PN�H � / exp��trH 2� for an N � N
complex Hermitian matrix H to occur; N 2 N. The
Green’s function G��� is determined by the replica limit
G��� � limn!0 n�1@Zn���=@� with

Zn��� � hdetn���H �iH2GUEN
; n 2 C: (3)

Angular brackets h� � �i stand for a matrix integral over
the properly normalized measure [2] PN�H �DH .

In the above definition of Zn, the parameter n is al-
lowed to be an arbitrary complex number C. Therefore, if
applied directly to (3), the replica limit would result [8] in
a correct answer for G���. This is not so, however, if one
maps the partition function Zn onto a variant [9] of the
replica � model [5], Zn � eZZn. Following the standard
steps of fermionic mapping, one derives [9,10]eZZn��� � hdetN�i��Q�iQ2GUEn ; n 2 N: (4)

Contrary to the starting point (3), the replica parameter n
in (4) is now restricted to positive integers by derivation.
As a result, any attempt to reconstruct the Green’s func-
tion G��� out of eZZn through the replica limit (2) will
inevitably face the problem of analytic continuation of eZZn
away from n 2 N.

Despite numerous efforts and discussions throughout
more than two decades, no mathematically satisfactory
idea was brought in, even though there exists a recipe
[9,11] to deal with the problem. Its detailed exposition can
be found in Ref. [12]; below we only recollect the facts
2002 The American Physical Society 250201-1
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(i) As a prerequisite, one attempts to unveil an explicit
dependence of eZZn on the replica index n which is only
implicit in (4). To this end, the matrix integral (4) is
evaluated approximately through a saddle point proce-
dure which makes sense if the dimensionN of the random
matrix H is large enough. For not too large replica
parameter n 2 N (in particular, n should not scale with
N), this yields [12] eZZ�sp�

n ��� ’
P
n
p�0 vol�Gn;p�zn;p���,

where vol�Gn;p� �
Qp
j�1���j�=��n� j� 1�� is the vol-

ume of Grassmannian Gn;p � U�n�=U�n� p� � U�p�,
and zn;p��� is a known function (its explicit form is
irrelevant to our discussion). The inner index p in the
above sum

P
n
p�0�� � �� counts a hierarchy of (nonequiva-

lent) causal [12] saddle points contributing the integral
(4) over Hermitian matrix Q; inequivalence of the saddle
points highlights a phenomenon of ‘‘replica symmetry
breaking.’’

(ii) Further, one seeks a proper analytic continuation ofeZZ�sp�
n away from n 2 N. The (most successful so far)

procedure devised in Ref. [9] suggests extending the
summation over p to infinity,

Pn
p�0�� � �� �

P
1
p�0�� � ��,

as the group volumes vol�Gn;p� vanish for p � n� 1.
Such a proposal suffers from two major drawbacks [12]:
(a) for n =2 N the group volumes grow too fast with p for
the sum

P
1
p�0�� � �� to converge; (b) so extended to infinity

the sum over p would necessarily involve a contribution
from n�O�N� where the summand is no longer given by
vol�Gn;p�zn;p���. This questions the self-consistency of
the method as a whole making it somewhat deficient.
Despite all these drawbacks, however, the approach fur-
nishes [9] a correct result for the large-N GUE density of
states in both leading and subleading orders in 1=N.

Integrable hierarchies and exact Painlevé reduction.—
On brief reflection, one has to admit that the approximate
evaluation of eZZn��� is the key point to blame for incon-
sistencies encountered in the procedure of analytic con-
tinuation. For this reason, we opt a route based on exact
and, therefore, truly nonperturbative evaluation of the
replica partition function. As improbable or fantastic as
it sounds, this is not an impossible task.

Our claim of exact solvability of the replica model (4)
and the models of the same ilk rests on two observations.

(i) To make the first, we routinely reduce the average
over Q 2 GUEn in (4) to the n-fold integral [9]

eZZn��� � Z �1

�1

Yn
k�1

d�ke
��2

k��k � i��N�2
n���: (5)

Here, �n��� �
Q
n
k>‘�1��k � �‘� � det��‘�1

k � is the
Vandermonde determinant [2] which makes it possible
to bring (5) to the form [8]eZZn��� � en�

2e��n��;N�; n 2 N; (6)

which involves the Hänkel determinant e��n��;N� �
det�@k�‘� e��1��;N��k;‘�0;...;n�1. The latter, as had first been
shown by Darboux [13] a century ago, satisfies the equa-
tion [14]
250201-2
e��ne��00n � �e��0n�2 � e��n�1e��n�1; n � 1; (7)

given the initial conditions e��0 � 1 and e��1 � e��
2 eZZ1���;

the prime stands for d=d�. The structure of (7) is even-
tually due to the � � 2 symmetry of the replica field
theory encoded into �2

n in (5); � is Dyson’s index.
Equations (6) and (7) establish a hierarchy between non-
perturbative replica partition functions eZZn with different
n 2 N. This is an exact alternative to the approximate
solution eZZ�sp�

n ���. Equation (7), known as the Toda lattice
equation [15] in the theory of integrable hierarchies [16],
is the first indication of exact solvability hidden in replica
field theories.

(ii) The second observation borrowed from Ref. [17]
concerns the fact that, miraculously, the same Toda lattice
equation governs the behavior of so-called � functions
arising in the Hamiltonian formulation of the six
Painlevé equations (PI–PVI), which are yet another fun-
damental object in the theory of nonlinear integrable
systems. Complementary to (7), and also luckily, the
Painlevé equations contain the hierarchy (or replica) in-
dex n as a parameter. For this reason, they serve as a
proper starting point to build a consistent analytic con-
tinuation of nonperturbative replica partition functions
away from n integers. This Painlevé reduction confirms
exact solvability of replica � models and assists perform-
ing the replica limit (2).

GUE density of states revisited.—With these observa-
tions in hand, let us consider the one-point Green’s func-
tion for GUEN where we have a rare luxury of examining
the replica partition function as a function of energy �,
replica parameter n, and matrix dimension N both before
and after replica � model mapping.

After replica mapping, the Painlevé reduction of the
partition function eZZn��� obeying (6) and (7) with eZZ0��� �
1 and eZZ1��� � HN��� [HN is the Hermite polynomial; see
(5) at n � 1] materializes in the exact representation [17]

eZZn��� � eZZn�0� exp

 Z i�

0
dt’IV�t�

!
; n 2 N: (8)

It involves the Painlevé transcendent ’IV�t� � ’n�N; t�
satisfying the Painlevé IV equation in the Jimbo-Miwa-
Okamoto form [18]

�’00
IV�

2 �4�t’0
IV �’IV�

2 �4’0
IV�’

0
IV �2n��’0

IV �2N� � 0:

(9)

The boundary condition is’IV�t�� �nN=t��1�O�t�1�� as
t!�1. Note that (9), and therefore (8), contains the
replica index n as a parameter.

By derivation, Eq. (8) holds for n positive integers only
and, generically, there is no a priori reason to expect it to
stay valid away from n 2 N. We claim, however, that it is
legitimate to extend (8) and (9), as they stand, beyond
n 2 N and consider this extension as a sought analytic
continuation. To prove this, we examine the partition
function Zn��� prior to � model mapping as given by
250201-2
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(3). In the eigenvalue representation [2], Eq. (3) reduces to
the N-fold integral akin to (5),

Zn��� �
Z �1

�1

YN
k�1

d�ke
��2

k��k � ��n�2
N���: (10)

Similar to (5)–(7), the appearance of �2
N in (10)

leads to the Hänkel determinant representation
Zn��� � Zn��;N� � e�N�

2
�N��; n� with �N��; n� �

det�@k�‘� �1��; n��k;‘�0;...;N�1. Given the initial conditions
�0 � 1 and �1 � e�

2
Zn��; 1�, the Toda lattice equation

�N�00N � ��0N�
2 � �N�1�N�1, with N � 1, follows by the

Darboux theorem [13]. Since n is allowed to be an arbi-
trary complex number in (3), the Toda equation deter-
mines a whole set of replica partition functions Zn��� for
all n 2 C. For Zn��; 0� � 1 and Zn��; 1� � Hn�i�� [see
(10) at N � 1], the Painlevé reduction of the above Toda
equation reads [17]

Zn��� � Zn�0� exp

 Z �

0
dt IV�t�

!
; n 2 C: (11)

Here,  IV�t� �  N�n; t� satisfies the Painlevé IVequation

� 00
IV�

2 � 4�t 0
IV � IV�

2 � 4 0
IV� 

0
IV � 2N�� 0

IV � 2n� � 0

(12)

and matches the asymptotic behavior  IV�t�� �nN=t��
�1�O�t�1�� at infinity t!�1.

A brief inspection reveals that (11) reduces to (8)
because of the duality i’n�N; it�jn2N �  N�n; t� that
can easily be verified from (9) and (12) and from the
boundary conditions at infinity. As the above duality
between (9) and (12) formally holds beyond n 2 N, we
conclude that (8) and (9) considered, as they stand, at
arbitrary complex n furnish a proper analytic continu-
ation. Then, it can be shown [19] that, in the large-N
limit, the replica projection G��� � limn!0 n

�1@eZZn���=
@� of the so-continued partition function (8) results in
the correct expressionG��� � ��




















�2 � 2N

p
for the one-

point Green’s function. The famous Wigner’s semicircle
[2] for the level density �N��� � ���1ImG��� �
��1




















2N � �2

p
readily follows.

Wigner-Dyson correlations in GUE.—The two-level
correlation function in GUE (symmetry class A in
Cartan classification) can be treated along the same lines.
Defined in terms of the two-point Green’s function G�s �
�1 � �2� � G��1; �2� as R�s� � �1=2��ReG�s� � 1�, it
can be obtained from the replica limit G�s� �
� limn!0 n

�2@2eZZn�s�=@s2; eZZn�s� is the fermionic parti-
tion function. Taken at imaginary argument, it is given by
the Verbaarschot-Zirnbauer integral [4]

eZZn�is� � ens

sn
2

Z 2s

0

Yn
k�1

d�ke��k�2
n���: (13)

This is a Fredholm determinant [20] associated with a
gap formation probability [2] within the interval �2s;�1�
in the spectrum of an auxiliary n� n Laguerre unitary
250201-3
ensemble. Utilizing the results of Refs. [20,21] we derive
[19]

eZZn�is� � exp

 Z 2s

0
dt
�V�t� � n2 � nt=2

t

!
: (14)

Here, �V�t� � ��n; t� satisfies the Jimbo-Miwa-Okamoto
form of the Painlevé V equation [22]

�t�00
V�

2 � ��V � t�0
V���V � t�0

V � 4�0
V��

0
V � n�� � 0

(15)

with the boundary condition [19,23] �V�t� � n2e�t=t as
t! �1.

The replica limit is governed by the behavior of eZZn�s�
in the vicinity of n � 0. In concert with the above dis-
cussion, we assume that (14) and (15) determine the
desired analytic continuation. Expanding the solution to
(15) around n � 0 yields [19] �V�t� � n2E2�t� �O�n3�,
where E2�t� is the exponential integral E‘�z� �R
1
1 dte

�ztt�‘, Rez > 0. As a result, the small-n expansion
of the partition function reads [19]

lneZZn�is� � ns� n2�1 � "� ln�2s� � E1�2s� � E2�2s��

�O�n3�: (16)

Here, " � 0:577 . . . is the Euler constant.
To the best of our knowledge, this is the first non-

perturbative evaluation of eZZn. Implementing the replica
limit, one derives the two-point Green’s function of the
form G�s� � 1 � 2is�2 sin�s�eis. This, in turn, repro-
duces the celebrated Wigner-Dyson two-point correlation
function [2] R�s� � �#�s� � s�2 sin2�s�. Note that this
result holds for arbitrary s down to zero (compare to
Ref. [9]).

Further examples.—The same strategy can be applied
to demonstrate exact solvability of fermionic replica �
models for other random matrix ensembles associated
with the Toda lattice hierarchy. Our partial list includes
chiral GUE (chGUE) [24] (symmetry class AIII) and
Ginibre’s ensemble [25] of complex matrices with no
further symmetries. A detailed account of the Painlevé
reduction for these ensembles will be presented elsewhere
[19]. Here we announce only small-n expansions of the
corresponding nonperturbative replica partition func-
tions. Adopting the notation of Ref. [26] for chGUE [their
Eq. (12)] and of Ref. [27] for Ginibre’s matrix model
[their Eqs. (13) and (32)], we have derived [19] for the
chGUE

lneZZ�n�
� ��� � n

 
� ln��

Z �

0
dtt�K��t�I��t�

� K��1�t�I��1�t��

!
�O�n2�

(17)

by the Painlevé III reduction (I� and K� are modified
Bessel functions) while for Ginibre’s complex matrices
[28]
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lneZZn�z; �zz� � n�z�zz�
�
1 �

�z�zz�N

�N � 1�!�N � 1� 2F2�N � 1; N;N � 2; N � 2;�z�zz�

�O�n2�; (18)

lneZZn�z; �zz;!; �!!� � n
�
2z�zz �

! �!!
2

�
�n2�1 � "� ln�! �!!� � E1�! �!!� � E2�! �!!�� �O�n3� (19)

by the Painlevé V reduction (2F2 is a hypergeometric

function). Exact correlation functions for the above en-
sembles follow from (17)–(19) upon implementing proper
replica limits. Out of three, the small-n expansion (17) is
of particular interest as it holds for arbitrary values of the
topological charge �. An alternative calculational scheme
[26] based on the saddle point evaluation of U�n� matrix
integrals, much in line with [9], could reproduce exact
results for � half integers only, with exactness being
secured [12] by the Duistermaat-Heckman theorem [29].

(i) The A, AIII, and Ginibre’s random matrix models
exhaust our list of ensembles illustrating exact solvability
of fermionic replica field theories. The integrable struc-
ture of all of them (as well as of those for the matrix
models from B, C, and D Cartan symmetry classes
not considered in the Letter) is related to the Toda lattice
(7) whose appearance is traced back to a particular
� � 2 symmetry of the corresponding replica partition
functions.

(ii) We expect the other random matrix ensembles
exhibiting � � 1 and � � 4 symmetries (belonging to
AI, BDI, CI and AII, CII, DIII classes in Cartan classi-
fication, respectively) to be exactly solvable as well. In
those cases, integrable hierarchies related to the Pfaff
lattice [30] are likely to arise.

(iii) Another application of the formalism developed
would be getting further insight into controversies sur-
rounding bosonic replicas which are known to be a total
failure in the description [4] of spectral correlations in
some ensembles while being quite successful in the de-
scription of others [27].

(iv) Finally, it would be desirable to figure out to what
extent the nonperturbative Painlevé reduction of replica
partition functions reported in this Letter is helpful in the
replica treatment [31] of recently advocated universal
‘‘zero-dimensional’’ random Hamiltonians which include
interactions [32].

I appreciate a clarifying correspondence with Peter J.
Forrester. Craig A. Tracy is thanked for helpful conversa-
tions during a workshop on random matrices in SUNYat
Stony Brook in February 2002.
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[11] A. Kamenev and M. Mézard, Phys. Rev. B 60, 3944
(1999); I.V. Yurkevich and I.V. Lerner, Phys. Rev. B 60,
3955 (1999).

[12] M. R. Zirnbauer, e-print cond-mat/9903338.
[13] G. Darboux, Lecons sur la Theorie Generale des

Surfaces et les Applications Geometriques du Calcul
Infinitesimal (Chelsea, New York, 1972), Vol. II, p. XIX.

[14] See the footnote [22] in Ref. [8].
[15] M. Toda, J. Phys. Soc. Jpn. 22, 431 (1967).
[16] A. Morozov, Usp. Fiz. Nauk 164, 3 (1994) [Phys. Usp. 37,

1 (1994)].
[17] P. J. Forrester and N. S. Witte, Commun. Math. Phys. 219,

357 (2001).
[18] M. Jimbo and T. Miwa, Physica (Amsterdam) 2D, 407

(1981); K. Okamoto, Math. Ann. 275, 221 (1986).
[19] E. Kanzieper (unpublished).
[20] C. A. Tracy and H. Widom, Commun. Math. Phys. 163, 33

(1994).
[21] P. J. Forrester and N. S. Witte, Commun. Pure Appl. Math.

55, 679 (2002).
[22] M. Jimbo, T. Miwa, Y. Môri, and M. Sato, Physica
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