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Simple Approach for Charge Renormalization in Highly Charged Macroions
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We revisit the notion of renormalized charge, which is a concept of central importance in the field of
highly charged colloidal or polyelectrolyte solutions. Working at the level of a linear Debye–Hückel-
like theory only, we propose a versatile method to predict the saturated amount of charge renormal-
ization, which is, however, a nonlinear effect arising at strong electrostatic coupling. The results are
successfully tested against nonlinear Poisson-Boltzmann theory for polyions of various shapes (planar,
cylindrical, and spherical), both in the infinite dilution limit or in confined geometry, with or without
added electrolyte. Our approach, accurate for monovalent microions in solvents such as water, is finally
confronted against experimental results on charged colloids and B-DNA solutions.
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sions for the effective charges at saturation, which com- to have an electrostatic energy eV0 balancing the thermal
Our present understanding of charged macroion sus-
pensions is essentially based on the DLVO theory, named
after Derjaguin, Landau, Verwey, and Overbeek [1]. This
approach relies on a Poisson-Boltzmann (PB) mean-field
description of the microion clouds. An important predic-
tion of the theory is the effective interaction pair potential
between two macroions (e.g., colloids) in the solvent
which, within a linearization approximation, takes the
well-known Yukawa or Debye-Hückel (DH) form: v�r� �
Z2 exp���r�=r, where Z is the charge of the object and �
denotes the inverse Debye screening length. However, this
approach becomes inadequate to describe highly charged
objects for which the electrostatic energy of a microion
near the macroion surface largely exceeds kBT, the ther-
mal energy, and the linearization of PB equations is a
priori not justified. In this case, however, the electrostatic
potential in exact [2] or mean-field [3–5] theories still
takes a Debye-Hückel form far from the charged bodies,
provided that the source of the potential is renormalized
(Z ! Zeff). The essential idea is that the microions which
suffer a high electrostatic coupling with the macroion
accumulate in its immediate vicinity so that the deco-
rated object (macroion plus captive counterions) may be
considered as a single entity which carries an effective
charge Zeff , much lower (in absolute value) than the
structural one. Within PB theory, Z and Zeff coincide for
low values of the structural charge, but Zeff eventually
reaches a saturation value Zsat independent of Z when the
bare charge increases [5,6].

Of course, the difficulty remains to predict Zsat for a
given suspension of macroions [4–7]. In the absence of
any general analytical framework for the computation of
the effective charge, this quantity is often considered as
an adjustable parameter to fit experimental data [8,9]. In
this Letter, we show that a simple physical argument, at
the level of the DH linearized description only, yields
explicit (and in some favorable cases analytical) expres-
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pare well with both numerical solutions of nonlinear PB
theory and available experimental data with monovalent
microions.

For simplicity, we start by considering a unique highly
(positively) charged sphere immersed in a symmetric 1:1
electrolyte of bulk ionic strength I0 � �2=8
‘B, where
‘B � e2=4
kBT is the Bjerrum length ( being the
dielectric constant of the solvent): ‘B � 7 A for water
at room temperature. Within PB theory, the dimension-
less electrostatic potential � � eV=kBT obeys the rela-
tion

r2� � �2sinh�: (1)

Far from macroion (where it is understood that � van-
ishes), the solution �PB of Eq. (1) also obeys the linear-
ized Poisson-Boltzmann (LPB) equation r2� � �2�,
and therefore takes the Yukawa form �LPB �
Zeff‘B exp���a� r�	=�r�1
 �a�	, with a the radius of
the sphere. Zeff (in e units) is consequently defined here
without ambiguity from the far field behavior of�PB (see
[4,10,11] for alternative definitions of effective charges).
Accordingly, a ‘‘nonlinear’’ region may be defined (r 2
�a; r�	), corresponding to�PB larger than unity, where by
definition of the cutoff r�, �LPB�r�� is of order 1. In
the limit of large �a, this nonlinear region is, however,
confined to the immediate vicinity of the macroion:
r� ’ a. We consequently have the effective boundary
condition �LPB�a� ’ �PB�r�� � C, where C is a constant
of order 1, which yields immediately Zeff � Ca�1

�a�=‘B. This argument assumes that the bare charge Z
is high enough to have �PB larger than unity close to the
macroion and, therefore, provides the saturation value of
Zeff , denoted hereafter as Zsat [12]. We therefore easily
obtain the nontrivial dependence of this quantity upon
physicochemical parameters.

This picture of a decorated macroion—where the
‘‘bound’’ counterions renormalizing the charge appear
 2002 The American Physical Society 248301-1
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energy kBT—may be rationalized as follows. In the limit
of large �a, we perform an asymptotic matching of the
nonlinear PB planar solution (see [1]) to the linear solu-
tion �LPB in curved geometry. We obtain for high bare
charges the same value of the contact potential
�LPB�a� � 4 (of order 1 as expected) so that Zsat �
4a�1
 �a�=‘B [13]. Such a procedure provides by con-
struction the correct large �a (low curvature) behavior of
Zsat, but we show below that it remains fairly accurate
down to �a of order 1.

Generalizing this approach, we consequently obtain
the leading curvature saturated effective charge from
the following analysis. For an isolated macroion of arbi-
trary shape in an electrolyte: (a) find the electrostatic
potential, �LPB, solution of the linearized PB equations,
supplemented by a fixed potential boundary condition:
�LPB�surface� � C, where C � 4 at leading order in
curvature; (b) deduce Zsat from Gauss theorem at the
surface of the object. In the case of an infinite cylinder
(radius a, bare line charge �), we obtain �sat �
2��a=‘B�K1��a�=K0��a�, where K0 and K1 are the modi-
fied Bessel functions of orders 0 and 1.

In order to test the validity of our results, we have
numerically solved the nonlinear PB equation (1) for
high Z values corresponding to the saturation regime
and computed the effective charge from the electrostatic
potential at large distances (i.e., the value required to
match �LPB to the far field �PB obtained numerically).
Figure 1 compares the resulting PB effective charge to our
expressions, for spherical and cylindrical macroions. The
agreement becomes excellent at large �a as it should, and
in the case of cylinders, even holds down to very small �a
(0.01), a point which is not a priori expected. Finally, in
the planar geometry our approach provides by construc-
tion the correct effective charge (compared to PB).
FIG. 1. Effective charge at saturation of an isolated spherical
macroion (radius a) as a function of �a. The continuous line is
the analytical expression given in the text, while the dots are
the results extracted from the far-field behavior of the nonlinear
PB potential. In the inset, the same results for the cylinder
geometry are shown on a log-linear scale.
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For spherical colloids, expressions reminiscent of that
reported above can be found in the literature [4,14,15]. It
seems, however, that the generality of the underlying
method has been overlooked. In particular, our procedure
may be extended to the finite concentration case, using
the concept of Wigner Seitz (WS) cell [5]: the influence of
the other macroions is accounted for by confining the
macroion into a cell, with global electroneutrality. The
size of the cell, RWS, is computed from the density of
macroions, while its geometry is chosen as to mimic the
spatial structure of the macroions in the solution. Suppose
that the system is in equilibrium with a reservoir of salt
defined in terms of its Debye length ��1. We first linea-
rize Eq. (1) around the value of potential at the cell
boundary, �R � ��RWS�, unknown at this point, which
yields

r2�� � �2?��0 
 ���; (2)

where �� � ���R, �2? � �2cosh��R�, and �0 ���������������������������
1� ��=�?�

4
p

. Note that the relevant screening length
��1
? (always smaller than ��1, a general feature for finite

concentration) is not a parameter and should be deter-
mined at the end of the calculation. Equation (2) is
supplemented by two boundary conditions: the consis-
tency constraint [���RWS� � 0] and the global electro-
neutrality (which imposes a vanishing normal electric
field at the WS boundary). To generalize the approach
discussed in the limit of infinite dilution, we propose
the following prescription (providing a third boundary
condition): the difference of potential between the macro-
ion and the WS surface is ���a� � 4. Here again, the
effective charge is obtained from Gauss theorem at the
macroion’s surface.

This generalized procedure is now applied to a solution
of spherical macroions with concentration �. The radius
of the WS spherical cell is given as RWS � �4
�=3��1=3.
In this geometry, the (LPB) solution of Eq. (2) reads

���r� � �0

�
�1
 f


e�?r

r

 f�

e��?r

r

�
; (3)

where f� � ���?RWS � 1�=2�?	 exp���?RWS�. Our pre-
scription allows one to compute �?, such that ���a� � 4.
This equation is solved numerically for �? using a simple
numerical Newton procedure. The effective charge fol-
lows from the gradient of ���r� in Eq. (3) taken at r � a.
The corresponding Zsat as a function of volume fraction
� � 4
�a3=3 is displayed in Fig. 2, with a comparison to
its counterpart deduced from the numerical solution of
PB theory supplemented with the popular procedure pro-
posed by Alexander et al. [5]. In this figure, we have also
plotted the results obtained without added salt [where
the term sinh� on the right-hand side of Eq. (1) is
replaced by �exp��=2, due to the absence of coions].
Our results are fully compatible with those obtained
from Alexander’s method, with a similar agreement for
248301-2



FIG. 3. Liquid-solid transition of charged polystyrene col-
loids: volume fraction for melting �m as a function of salt
ionic strength I0. Dots are experimental points for the melting
line extracted from Ref. [8]. The solid line is the theoretical
prediction for the melting transition using our prescription for
effective charges. The dashed line corresponds to Zeff � 880
(see text).

FIG. 2. Effective saturated charge of spherical macroions
(radius a) as a function of volume fraction � for �a � 2:6.
The continuous line shows the effective charge computed using
the prescription, while the dots are the results of the nonlinear
PB theory, following Ref. [5]. Inset: no-salt situation.
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cylindrical macroions (not shown). It is eventually in-
structive to note that, for a charged plane confined with-
out added salt in a WS slab of width 2h, Alexander’s
saturation surface charge may be computed analyti-
cally with the result [13] �sat � 2

�3=2 sinh�
=
���
2

p
�=‘Bh,

whereas we obtain �sat �
���
6

p
argcosh�5�=
‘Bh following

our prescription. Both expressions agree within 10% and
remarkably exhibit the same functional dependence on ‘B
and density (through h).

That our prescription compares favorably with
Alexander’s procedure for the planar, cylindrical, and
spherical geometries, calls for the more stringent test of
confronting our predictions against experimental data.
We consider two specific situations corresponding to
two different geometries: crystallization of charged
colloidal suspensions and osmotic pressure in B-DNA
solutions.

Crystallization of charged spheres.—Investigation into
the phase diagram of charged polystyrene colloids has
been conducted experimentally by Monovoukas and Gast
[8] and compared to the phase diagram of a system where
particles interact through a Yukawa potential (deduced
from extensive molecular dynamics simulations [16]).
However, this comparison requires an ad hoc choice for
Zeff . We use here the results we found for the effective
charge as a function of ionic strength, which we insert
into the numerical generic phase diagram of Yukawa
systems [16]. We emphasize that there is no adjustable
parameter in our equations since the radius of the poly-
styrene beads, the only parameter entering our descrip-
tion, was independently measured to be a � 667 A. We
only make the (reasonable) assumption that the bare
charge Z of the colloids is large enough to have Zeff ’
Zsat. The results for the melting line using our prescription
for the effective charge are confronted to the experimen-
tal data in Fig. 3. We also plot the result for the melting
248301-3
line for an ad hoc constant effective charge, Zeff � 880,
as was proposed in Ref. [8] (while in our case the latter
varies between 500 and 2000 on the melting curve). The
observed agreement of our results illustrates both the
pertinence of our prescription for Zsat and the relevance
of the PB saturation picture for macroions of large bare
charge, for monovalent microions in water.

Osmotic coefficient of B-DNA.—A similar test of our
method may be performed for the cylindrical geometry
using the experimental results for rigid cylindrical poly-
electrolytes such as B-DNA [17]. We specifically consider
the measurements of the osmotic coefficient � �
 osm= c, defined as the ratio between the osmotic pres-
sure  osm to the pressure  c of releasable counterions
having bare density cc ( c � kBTcc). Within the WS
model, B-DNA macroions are confined into cylindrical
cells, whose radius RWS is related to the bare concentra-
tion of DNA counterions as cc � �‘DNA
R

2
WS�

�1, with
‘DNA � 1:7 A the distance between charges along DNA.
The osmotic pressure is related to the densities of micro-
ions at the cell boundary:  osm � kBT��
 
 �� � 2I0�
[18], which can be recast in the form  osm � kBT��2? �
�2�=4
‘B introducing the screening factor �? defined
previously. This latter quantity is computed from our
prescription, following the same lines as for the spherical
case [see Eq. (3)].

In Fig. 4, the corresponding results for the osmotic
coefficient are confronted against the experimental data
of Ref. [17], showing again a good quantitative agreement.
As in Ref. [18], we report the prediction of classical
Oosawa-Manning condensation theory, for which the
osmotic coefficient is constant [� � ‘DNA=�2‘B�] at com-
plete variance with the experiments. Again we emphasize
that the only quantity introduced in our description is the
248301-3



FIG. 4. Osmotic coefficient of B-DNA vs density of DNA
phosphate ions cc, for I0 � 10, 2, and 0 mM (from bottom to
top). Dots: experiments of Ref. [17]; solid lines: present pre-
scription; dashed line: prediction of Oosawa-Manning conden-
sation theory.
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diameter (a � 10 A) of DNA, known from independent
measurements.

In conclusion, we have put forward a simple method of
asymptotic matching to compute the effective charge at
saturation for isolated macroions. In the situation of finite
density, this method has been translated into a prescrip-
tion, the validity of which has been assessed. This ap-
proach (mostly suited to describe the colloidal limit
�a � 1) amounts to considering the highly charged
macroions as objects with constant electrostatic potential
�4kT=e, independently of shape and physicochemical
parameters (size, added 1:1 electrolyte . . .). As a general
result, we find that the effective charge is an increasing
function of �, which stems from the reduction of the
attraction between the counterions and the macroion.
Addition of salt consequently brings two antagonist ef-
fects on the effective Coulombic interaction between
macroions: the range of the interaction decreases due to
screening, while the amplitude increases due to the effec-
tive charge. The competition between these two effects
might be a key point in the understanding of these
systems.

An important question concerning our approach is that
of the validity of PB theory for highly charged macroions.
Within PB, microion correlations are neglected, but the
approach may still allow one to describe high macro/
microion couplings: in particular, for monovalent micro-
ions in water at room temperature, microion correlations
are negligible for all known macroions. This may no
longer be the case in presence of multivalent microions.
More generally, PB is a reasonable approximation when
the macroion size a is much larger than ‘B [19], and the
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saturation plateau of Zeff as a function of the bare charge
Z is an important physical phenomenon that our approach
allows one to capture. When a becomes of the same order
as ‘B, the amount of counterion ‘‘condensation’’ found in
molecular dynamics or Monte Carlo simulations is larger
than predicted by PB [19,20]; our method for Zsat there-
fore provides an upper bound for the effective charge. It
is, moreover, noteworthy that for B-DNA where a=‘B ’
1:4, our approach still gives a valuable first approximation
and that omission of charge renormalization leads to
spurious results (such as negative osmotic coefficients
corresponding to an unphysical phase transition at physi-
ological salt concentrations).
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