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Fluctuation-Driven Quantum Phase Transitions in Clean Itinerant Ferromagnets
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The quantum phase transition in clean itinerant ferromagnets is analyzed. It is shown that soft
particle-hole modes invalidate Hertz’s mean-field theory for d � 3. A renormalized mean-field theory
predicts a fluctuation-induced first order transition for 1< d � 3, whose stability is analyzed by
renormalization group techniques. Depending on microscopic parameter values, the first order tran-
sition can be stable, or be preempted by a fluctuation-induced second order transition. The critical
behavior at the latter is determined. The results are in agreement with recent experiments.
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tion to the critical one, and hence to multiple exponents z.
This in turn leads to an instability of the mean-field fixed

We will use renormalization group (RG) techniques to
show the following. (i) The first order transition can be
One of the most common and basic examples of a phase
transition is the paramagnet-to-ferromagnet transition in
metals, e.g., iron and nickel. These elements have high
Curie temperatures, on the order of 1000 K. Examples of
itinerant ferromagnets with much lower Curie tempera-
tures, on the order of tens of degrees Kelvin, include
MnSi [1], ZrZn2 [1,2], and UGe2 [3]. In the latter mate-
rials, the Curie temperature can be suppressed to zero by
the application of hydrostatic pressure. This allows for an
experimental investigation of the ferromagnetic quantum
phase transition, which takes place at zero temperature as
a function of a nonthermal control parameter, in this case,
pressure. Another example is NixPd1�x [4], where the
control parameter is the nickel concentration.

The ferromagnetic transition in metals was also the
subject of the earliest theoretical studies of quantum
phase transitions. In an important paper, Hertz [5] con-
cluded that the critical behavior should be mean-field-like
in all dimensions d > 1. This is because, in quantum
statistical mechanics, statics and dynamics are coupled.
As a result, the quantum phase transition in d dimensions
is related to its classical counterpart in d� z dimensions,
with z the dynamical critical exponent. Since simple
theories suggest z � 3 for clean itinerant ferromagnets,
and since the classical Heisenberg ferromagnet has an
upper critical dimension d�c � 4, this argument suggests
d�c � 1 for the quantum transition.

It is now known, mostly through studies of the corre-
sponding problem in the presence of quenched disorder,
that the above argument is in general not correct. The
basic physical reason is the existence of soft modes,
particle-hole excitations in the case of itinerant ferro-
magnets, that couple to the order parameter and preclude
the construction of a Hertz-type Landau-Ginzburg-
Wilson (LGW) theory entirely in terms of the order
parameter. These soft modes lead to time scales in addi-
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point that is not apparent in a power-counting analysis of
the LGW theory. In the disordered case, the net result is an
upper critical dimension d�c � 4 (instead of d�c � 0 in
Hertz theory), with nonmean field (and nonpower law)
critical behavior in the physically most interesting di-
mension d � 3 [6]. In the clean case, an analogous analy-
sis of the stability of Hertz’s fixed point shows that the
upper critical dimension is d�c � 3. In d � 3 a general-
ized Landau theory predicts a first order transition due to
an m4 lnm term in the Landau free energy, with m the
magnetization [7]. For 1< d< 3 this theory also predicts
a first order transition. Sufficiently high temperature or
disorder lead to an analytic Landau free energy and
render the transition second order.

This theoretical situation is at best in partial agreement
with experiments. The existing theory predicts that the
transition should always be of first order in sufficiently
clean materials at sufficiently low temperatures [8]. If
temperature or disorder drives it second order, then the
predicted critical exponents are the classical Heisenberg
exponents, or the strongly nonmean field exponents of
Ref. [6], respectively. Experimentally, the transition in
MnSi and UGe2 at low temperatures is indeed observed to
be of first order [1,3], but in ZrZn2 it is of second order
even in very clean samples at very low temperatures [2],
and the same is true in NiPd [4]. Furthermore, the critical
behavior in NiPd was found to be mean-field-like to
within the experimental accuracy, in good agreement
with the predictions of Ref. [5]. This is suprising, given
the above conclusion that Hertz theory cannot be correct
in d � 3.

In this Letter, we show that the nature of the clean
ferromagnetic quantum phase transition is determined by
physical effects that had not previously been recognized,
and that taking these effects into account removes the
above discrepancies between theory and experiment.
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understood as a fluctuation-induced first order transition.
(ii) For certain microscopic parameter values the first
order transition is unstable with respect to a fluctuation-
induced second order transition. (iii) The upper critical
dimension is d�c � 3. (iv) In the second order case, the
critical behavior in d � 3 is given by mean-field expo-
nents with logarithmic corrections, and in d < 3 it can be
controlled by means of a 3� � expansion. We will present
our results first, and then sketch their derivation and
explain their physical origin.

If the bare value of the quartic coefficient in the
Landau free energy is sufficiently small (in a sense to
be specified below), one finds the first transition discussed
in Ref. [7]. However, if the bare quartic coefficient is
sufficiently large, the transition is of second order. In
d � 3, the critical behavior is mean-field-like with loga-
rithmic corrections to scaling. Specifically, the paramag-
non propagator in the critical regime in the paramagnetic
phase has the form

M�k;�n� � 1=�t� a�k� k2 � j�nj=k	; (1a)

where t is the dimensionless distance from criticality at
zero temperature (T � 0), k is the wave number, and
�n � 2�Tn is a bosonic Matsubara frequency. k and
�n have been made dimensionless by means of suitable
microscopic scales. The leading behavior of the coeffi-
cient a for small k is

a�k! 0� / �ln1=k��1=26: (1b)

Such logarithmic corrections to power-law scaling can be
conveniently expressed in terms of scale dependent criti-
cal exponents. For instance, with b� 1=k a RG length
scale factor [9], we can write a�k� k2 / k2��, with a scale
dependent critical exponent � given by

� �
�1

26
lnlnb= lnb: (2a)

The correlation length exponent �, the susceptibility ex-
ponent �, and the dynamical exponent z can be directly
read off Eqs. (1a) and (1b). The order parameter exponents
� and � can be obtained from scaling arguments for the
free energy. We find

� � 1=�2� ��; z � 3� �;

� � 1; � � 1=2; � � 3: (2b)

These exponents are defined as usual, i.e., �� t��, ��
T � ��z, M� t��, m� t�, and m� h1=�, with � the
correlation length and h an external magnetic field.
The result for � is valid to leading logarithmic accuracy;
the values of �, �, and �, as well as the relations between
� and � and z, respectively, are exact. Finally, we define a
specific heat exponent � by CV / T�� at criticality. (This
is a generalization of the usual definition of � at thermal
phase transitions.) We obtain the exact relation
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� � �1� �=z� lnlnb= lnb: (2c)

In d � 3� �, the second order transition can be treated
in an � expansion. We find

� � ��=26; � � �1� ��� ��=z: (3)

The value for � is valid to one-loop order, the second
equality is exact. The other exponents are still given by
the exact Eqs. (2b) above.

These results predict that the transition in 3� d, to the
extent that it is of second order, is characterized by mean-
field exponents with logarithmic corrections. Within the
accuracy of existing experiments, this is indistinguishable
from Hertz’s critical behavior. In addition to explaining
why the transition is of first order in some materials, and
of second order in others, our theory therefore provides an
explanation for the fact that the observed critical behavior
in the second order case is mean-field-like. We now sketch
the derivation of the above results.

The lesson learned from the disordered quantum fer-
romagnetic problem [6] is the following: For a reliable
analysis of the critical behavior it does not suffice to
construct a LGW theory. Rather, in addition to the order
parameter fluctuations, all other soft modes that couple to
the latter must be kept explicitly and on equal footing.
Accordingly, the effective action should consist of a part
depending on the order parameter field M, a part depen-
ding on the soft fermionic two-particle modes described
by a field q, and a coupling between the two,

A�M; q	 � AM �Aq �AM;q: (4)

AM is a static LGW functional (the dynamics will be
provided by AM;q),

AM �
Z
dxM�x� �t� ar2	M�x� � u

Z
dxM4�x�: (5)

Here x � �x;�� comprises the real space position x and the
imaginary time �.

R
dx �

R
dx

R�
0 d�with � � 1=kBT. a

and u are constants.
The soft fermion field q originates from the composite

fermion variables [10]

Q12 �
i
2

0
BBB@
� 1"

�  2" � 1"
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CCCA:

(6a)

Here the  and �  are the Grassmann-valued fields that
provide the basic description of the electrons, and all
fields are understood to be taken at position x. The indices
1, 2, etc., denote the dependence of the fields on fermionic
Matsubara frequencies !n1 � 2�T�n1 � 1=2�, etc., and
the arrows denote the spin projection. A convenient basis
in the space of 4� 4 matrices is given by �r � si (r; i �
0; 1; 2; 3), with �0 � s0 the 2� 2 unit matrix, and �1;2;3 �
�s1;2;3 � �i%1;2;3, with the %i the Pauli matrices. The
247202-2



VOLUME 89, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 9 DECEMBER 2002
matrix elements of Q are bilinear in the fermion fields, so
Q-Q correlation functions describe two-fermion excita-
tions. In a Fermi liquid, the Q fluctuations are massive
and soft, respectively, depending on whether the two
frequencies carried by the Q field have the same sign,
or opposite signs. We thus separate the Q fluctuations into
massless modes, q, and massive modes, P, by splitting the
matrix Q into blocks in frequency space [10],

Qnm�x� � ��nm�Pnm�x� ���n����m� qnm�x�
����n���m� qynm�x�: (6b)

In what follows, we will incorporate the frequency con-
straints expressed by the step functions into the fields P
and q, respectively. That is, the frequency indices of q
must always have opposite signs.

The massive modes can be formally integrated out to
obtain an effective action for the soft modes, qnm. The
Gaussian part of the fermionic action has the form

Aq �
�1

G

Z
dx dy

X
1;2;3;4

tr �q12�x��
�2�
12;34�x� y� qy34�y�	;

(7a)

where tr traces over the matrix degrees of freedom of
Eq. (6a). As we see from Eq. (6a), the q propagator
describes particle-hole excitations, which in a clean elec-
tron system have a ballistic dispersion relation, i.e., the
frequency scales linearly with the wave number. The
vertex function ��2� in momentum space therefore has
the form

��2�
12;34�k� � �13 �24 �k�GHj�1�2j�: (7b)

G and H are model dependent coefficients. A spin-singlet
interaction amplitude can be included in the model, but
will not be of qualitative importance for our purposes.

The coupling term AM;q originates from the linear
coupling between M and the electron spin density, which
can be expressed in terms of Q by means of Eq. (6a). It is
obvious that integrating out the massive field P will result
in terms that couple M with all powers of q, AM;q �
AM�q �AM�q2 � . . . . Let us define a matrix magneti-
zation field B�x� by

B12�x� �
X
i;r

��r � si� ���r�1i
rB�x�; (8a)

with components

r
iB12�x� �

X
n

�n;n1�n2�M
i
n�x� � ���r�1Mi

�n�x�	; (8b)

The first term in that series can then be written

AM�q � c1T
1=2

Z
dxtr �B�x� q�x�	: (9a)

The second one has the overall form
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AM�q2 � c2T1=2
Z
dxtr �B�x� q�x� qy�x�	: (9b)

Its detailed structure will be derived elsewhere [11]. c1
and c2 are model dependent coupling constants.

The Gaussian field theory defined by the terms bilinear
in M or B and q is easily diagonalized in terms of the
paramagnon propagator

M�k;�n� � 1


�
t� ak2 �

�4Gc21=��j�nj

k�GHj�nj

�
; (10a)

and the fermion propagator

D�k;�n� � 1=�k�GHj�nj�: (10b)

We now subject the entire action to a RG analysis [12].
We employ a differential momentum-shell RG and inte-
grate over all frequencies. With b the RG length rescaling
factor, we rescale wave numbers and the fields via

k! bk; (11a)

Mn�x� ! b�d�2���=2Mn�x�; (11b)

qnm�x� ! b�d�2�~���=2qnm�x�: (11c)

Here Mn�x� is the temporal Fourier transform of M�x�,
and � and ~�� are exponents that characterize the spatial
correlations of the order parameter and the fermion fields,
respectively. The rescaling of imaginary time, frequency,
or temperature is less straightforward. We need to ac-
knowledge the fact that there are two different time scales
in the problem, namely, one that is associated with the
critical order parameter fluctuations, and one that is
associated with the soft fermionic fluctuations. Ac-
cordingly, we must allow for two different dynamical
exponents, z and ~zz, and imaginary time and temperature
may get rescaled via either one of two possibilities,

�! b�z�; T ! bzT; (11d)

�! b�~zz�; T ! b~zzT: (11e)

How these various exponents should be chosen is dis-
cussed below.

Within this framework, Hertz’s theory corresponds to a
fixed point where ~�� � ~zz � 1, which makes G and H
marginal, and � � 0, z � 3, which makes a and c1
marginal. Power-counting then shows that c2 is irrelevant
for d > 1 if the time scale is given by the exponent z, but
marginal for d � 3 and relevant for d < 3 if it is given by
~zz. It is easy to find explicit diagrams, starting at one-loop
order, where the latter is the case [11]. This establishes
that the upper critical dimension, above which Hertz’s
fixed point is stable, is d�c � 3.

To deal with the situation in d � 3 we go to one-loop
order. Perturbation theory, combined with power count-
ing, shows that in d � 3 there are no logarithmic correc-
tions to c1, c2, G, and t. Motivated by the disordered case
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[6], we will be looking for a fixed point where G and c1
are marginal, which implies ~�� � 1 and z� � � 3. As
mentioned above, c2 can have two different scale dimen-
sions, depending on which time scale enters.We require c2
with the fermionic time scale, corresponding to ~zz, to be
marginal, which yields ~zz � � � 1. This leaves � as the
only independent scale dimension. The critical time scale
makes c2 irrelevant with scale dimension �1. For the
remaining coupling constants to one-loop order we find
the flow equations

da=d lnb � ��a� Aa=H; (12a)

du=d lnb � ��2� ��u� Auc
2
2=H; (12b)

dH=d lnb ��H � AH=�a� t�: (12c)

Here c2 is the irrelevant version of c2, with flow equation

dc2=d lnb � �c2: (12d)

Au > 0 is a model dependent positive coefficient. An
explicit calculation yields for the other two coefficients,
AH � 27Aa � 3Gc22=�

3, with c2 the marginal incarna-
tion of this coupling constant. The ratio AH=Aa � 27 is
what determines the critical exponents.

Solving the flow equations, Eqs. (12a)–(12d), at t � 0
shows that u becomes negative at a finite scale provided
that its bare value satisfies u�0� < Au �c

�0�
2 	2=Aa. This re-

sults in a fluctuation-driven first order phase transition.
Indeed, the generalized mean-field theory for this tran-
sition maps onto the one for the superconducting transi-
tion at T > 0, which is the canonical example of a
fluctuation-driven first order transition [13]. However, if
the opposite inequality holds, then u remains positive at
all scales and the transition is continuous. Notice that
within strict perturbation theory the second term on the
right-hand side of Eq. (12b) is constant, so the transition
is always of first order. This is the RG version of the
theory given in Ref. [7]. We note that for sufficiently large
t, perturbation theory is valid. If the first order transition
predicted by perturbation theory occurs at sufficiently
large t, it therefore is unaffected by the fluctuation effects.
In order for the generalized mean-field theory of Ref. [7]
to be controlled, the magnetization discontinuity must in
addition be small.

As we see, fluctuations can qualitatively change the
prediction of perturbation theory and drive the transition
second order. The mechanism for this is very similar to
the fluctuation-driven second order transition in classical
Potts models [14]. The point is that the renormalization of
a negative loop correction to the u-flow equation can
make this term go to zero for large scales sufficiently
fast to keep u positive, even if a scale independent loop
correction would lead to a negative u. In the case of a
second order transition, the critical exponents �, �, and �
can be obtained by solving Eqs. (12a)–(12d) and substi-
tuting the result for a�lnb� in the paramagnon propagator,
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Eq. (10a). In d � 3 this procedure is tricky since it leads
to scale dependent exponents; technical details will be re-
ported elseswhere [11]. The results are given in Eqs. (2a)–
(2c). In d � 3� � the procedure is straightforward and
leads to � as given in Eqs. (3), and to Eqs. (2b). � is most
easily obtained from the Gaussian free energy by replac-
ing the Gaussian paramagnon propagator by the critical
one. Differentiation with respect to T yields the specific
heat. � and � are most easily obtained from scaling
arguments [11], taking into account that u is a dangerous
irrelevant operator for the magnetization [12].
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