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Striped Phase in a Quantum XY Model with Ring Exchange
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We present quantum Monte Carlo results for a square-lattice S � 1=2 XY model with a standard
nearest-neighbor coupling J and a four-spin ring exchange term K. Increasing K=J, we find that the
ground state spin stiffness vanishes at a critical point at which a spin gap opens and a striped bond-
plaquette order emerges. At still higher K=J, this phase becomes unstable and the system develops a
staggered magnetization. We discuss the quantum phase transitions between these phases.
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hijkli are sites on the corners of a plaquette. For K � 0 lattices with Ly � 2Lx. The translational and rotational
Ring exchange interactions have for a long time been
known to be present in a variety of quantum many-body
systems [1] and have been investigated rather thoroughly
in solid 3He [2]. They are also important for electrons in
the Wigner crystal phase [3,4]. In strongly correlated
electron systems, such as the high-Tc cuprates and related
antiferromagnets, ring exchange processes are typically
much weaker than the pair exchange J [5] and are often
neglected. Four-spin ring exchange has, however, been
argued to be responsible for distinct features in the mag-
netic Raman [6] and optical absorption spectra [7]. Neu-
tron measurements of the magnon dispersion have also
become sufficiently accurate to detect deviations from the
standard pair exchange Hamiltonian (the Heisenberg
model) and such discrepancies have been attributed to
ring exchange [8,9]. Recently, ring exchange has attracted
interest as a potentially important interaction that could
lead to novel quantum states of matter, in particular, 2D
electronic spin liquids with fractionalized excitations
[10–15]. Furthermore, for bosons on a square lattice
ring exchange has been shown to give rise to an ‘‘exciton
Bose liquid’’ phase [16].

Here we study the effects of ring exchange in one of the
most basic quantum many-body Hamiltonians—the
spin-1=2 XY model on a 2D square lattice. We use a
quantum Monte Carlo method (stochastic series expan-
sion, hereafter SSE [17–19]) to study the low-temperature
behavior of this system including a four-spin ring term.
Defining bond and plaquette exchange operators
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the Hamiltonian is

H � �J
X
hiji

Bij � K
X
hijkli

Pijkl; (3)

where hiji denotes a pair of nearest-neighbor sites and
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this is the standard quantum XY model, or, equivalently,
hard-core bosons at half-filling with no interactions apart
from the single-occupancy constraint. This system under-
goes a Kosterlitz-Thouless transition at T=J � 0:68
[20,21] and has a T � 0 ferromagnetic moment Mx �
hSxi i � 0:44 [22,23]. The K term corresponds to retaining
only the purely x and y terms of the full cyclic exchange.

In a soft-core version of the pure ring model (J � 0),
Paramekanti et al. recently found a compressible but non-
superfluid phase (exciton Bose liquid) for weak on-site
repulsion U [16]. As the hard-core limit is approached
they found a transition to a staggered charge-density-
wave phase. Hence, the ground state of the spin
Hamiltonian (3) can be expected to change from an
easy-plane ferromagnet with a finite spin stiffness �s
and a magnetization hMxi at low K=J to an Isinglike
antiferromagnet with vanishing �s and a staggered mag-
netization hMSi � ��1�xi�yihSzi i at large K=J. The central
result of our simulations is that the competing J and K
interactions give rise to yet a third phase at K=J 	 10; a
striped bond-plaquette phase where the expectation val-
ues hBiji and hPijkli alternate in strength with a period of
two lattice spacings in one of the lattice directions. An
example of this order is illustrated in Fig. 1. A similar
columnar ‘‘bond charge’’ phase was recently predicted
based on a lattice field theory including a plaquette term
[13]. The field theory also has fractionalized phases, of
which we have found no evidence. Hence, the microscopic
mechanisms leading to fractionalized spin liquids remain
to be clarified.

The SSE simulation method [17–19] that we use here
has previously been applied to a variety of spin and boson
models with two-particle interactions, including the
Hamiltonian (3) with K � 0 (the XY model) [23]. The
generalization to include the four-spin K term is relatively
straightforward, although nontrivial new procedures had
to be developed for large-K=J simulations [24]. Bond and
plaquette strengths such as those shown in Fig. 1 were
obtained using open-boundary rectangular Lx 
 Ly
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FIG. 2. Spin stiffness and plaquette-stripe order parameter vs
ring-exchange coupling for a 64
 64 system with periodic
boundary conditions at T � J=8.

FIG. 1. Plaquette (left) and bond (right) strengths at the
center of a 64
 128 open-boundary lattice at K=J � 10 and
T � J=8. The plaquette strengths are represented by shades of
gray with the weakest hPijkli � 0:222 (white squares) and
strongest 0:468 (black squares). The bond strengths are indi-
cated by the width of the line segments, with the weakest
hBiji � 0:181 and the strongest 0:505.
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symmetries are then broken and a unique static bond-
plaquette strength pattern can be observed when K=J	
10 at T=J & 0:5. For K=J & 8 no order is visible at the
centers of large lattices at any temperature. The modu-
lations seen within the stripes in Fig. 1 are strongest at the
four corners of the lattice and decrease as the center is
approached. They also decrease as the lattice size is
increased and in the thermodynamic the striped state
should therefore be analogous to the fourfold degenerate
columnar spin-Peierls state of Ref. [13].

Our conclusion that the stripes are stable is based on
finite-size scaling of correlation functions on periodic
L
 L lattices. The striped phase can be detected using
the bond or plaquette correlations. Here we consider the
plaquette structure factor

P�qx; qy� �
1

L2

X
a;b

ei�ra�rb��qhPa1a2a3a4Pb1b2b3b4i; (4)

where a1; . . . ; a4 are the sites belonging to plaquette a.We
have studied the full q dependence and only found peaks
at �0; �� and ��; 0�. Hence, the modulations within the
stripes seen in Fig. 1 are indeed induced by open bounda-
ries. The spin structure factor is defined as

S�qx; qy� �
1

L2

X
j;k

ei�rj�rk��qhSzjS
z
ki; (5)

where ri � �xi; yi� is the lattice coordinate. We will ana-
lyze the staggered and striped order parameters per site,
defined as

hM2
Si � S��;��=L2; (6)

hM2
Pi � P��; 0�=L2: (7)

The spin stiffness (the superfluid density in the boson
representation) is defined by
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�s �
@2E�"�
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where E�"� � hH�"�i=L2 and the twist " is imposed in
the x or y direction so that the corresponding bond
operators (1) become Bij�"� � cos�"��Sxi S

x
j � Syi S

y
j� �

sin�"��Sxi S
y
j � Syi S

x
j�. The derivative at " � 0 in Eq. (8)

can be directly estimated using the winding number
fluctuations in the SSE simulations [25].

Figure 2 shows the spin stiffness and the stripe order
parameter on an L � 64 lattice at T � J=8 (where the
results are almost converged to their ground state values).
The stiffness becomes very small at K=J � 8, where the
stripe order increases significantly. Finite-size scaling
shows that the stripe order survives in the thermodynamic
limit. Results for K=J � 8:5 and temperatures sufficiently
low to give the ground state are shown in Fig. 3. For
L * 32 the data graphed versus 1=L fall on a straight
line, which extrapolates to a nonzero value as L ! 1.
Based on results [16] for the soft-core version of the
J � 0 model (or K ! 1) the staggered magnetization
can be expected to be nonzero for large K. However, as
also shown in Fig. 3, at K=J � 8:5 hM2

Si decreases as 1=L2

for large lattices, implying that the spin-spin correlations
are short ranged [S��;�� is finite]. Figure 3 also shows
results for K=J � 64, where the scaling behaviors of the
two quantities is reversed—hM2

Pi decays as 1=L2 whereas
hM2

Si extrapolates to a nonzero value. Note that the size
dependence of M2

S is nonmonotonic, with a minimum
around L � 10. Such nonmonotonicity has previously
been observed for a spatially anisotropic spin model
[26] where it was attributed to the presence of two differ-
ent low-energy scales in the system. The nonmonotonicity
seen at K=J � 64 in Fig. 3 indicates that the stripe corre-
lations remain strong with a correlation length 	10 lat-
tice spacings. The location of the minimum in hM2

Si
moves to lower 1=L as K=J is decreased, indicating
growing stripe correlations. The strong stripe correlations
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FIG. 4. Temperature dependence of the uniform magnetic
susceptibility for L � 80 systems close to the superfluid-striped
transition. Statistical errors are of the order of the size of the
symbols. The dashed line shows the linear behavior expected
for a quantum phase transition with z � 1.
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FIG. 3. Finite-size scaling of the ground state staggered mag-
netization (open circles) and the plaquette-stripe order parame-
ter (solid circles) at K=J � 8:5 and 64. The dotted straight lines
show extrapolations of the infinite-size order parameters. The
dashed curves show the form 	1=L2 expected asymptotically
when there is no long-range order.
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in the staggered phase makes it difficult to determine the
hMSi versus K=J curve. Our simulations show that the
stripe order persists at least for K=J up to 12, and also that
the staggered correlations are short ranged up to this
coupling. The stripe correlations are short ranged for
K=J � 16. Between K=J � 12 and 16 the two phases
could either coexist or be separated by a first-order tran-
sition. Simulations of larger lattices will be required in
order to clarify the interesting transition region.

The superfluid-striped transition appears to be of sec-
ond order, although we cannot exclude a very weakly
first-order transition (which was argued to be more likely
in Ref. [13]). The vanishing of the spin stiffness seen in
Fig. 2 indicates the opening of a spin gap. A spin gap can
be inferred also from the temperature dependence of the
uniform magnetic susceptibility,

#u �
1

L2

1

T

* X
i

Szi

!
2
+
: (9)

Figure 4 shows the T dependence for L � 80 (sufficiently
large to eliminate finite-size effects). The T ! 0 suscep-
tibility vanishes for K=J between 7:90 and 7:95, i.e., a
spin gap is present above a critical coupling in this range.
The temperature independence of #u at K=J � 7:80 at the
two lowest temperatures is expected on account of this
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being the behavior in the XY model [18,23,27]. The
behavior for K=J � 7:90 and 7:95 is consistent with
#u 	 T at the critical coupling, which is indicative of a
T � 0 quantum critical point with dynamic exponent
z � 1 [28,29]. At K=J � 7:9 we have verified that the
stripe structure factor indeed exhibits nontrivial finite-
size scaling, P��; 0� 	 L% with % < 2, but the statistical
accuracy is not sufficient for determining the exponent to
a meaningful precision. Nevertheless, power-law scaling
for the same K=J at which the spin gap opens supports a
continuous quantum phase transition with no intervening
disordered phase or coexistence region.

In summary, the spin-1=2 XY model with ring ex-
change exhibits three different ground state orderings as
a function of the strength of the ring term. The superfluid-
striped transition appears to be a continuous quantum
phase transition, whereas the striped-staggered transition
most likely is of first order. Since the sign of the J term in
(3) is irrelevant (the sign of the K term is relevant) the
superfluid-striped transition could possibly, in an ex-
tended parameter space, connect to the order-disorder
transition in the two-dimensional Heisenberg antiferro-
magnet with frustrating interactions [30]. We also note
that the staggered-striped-superfluid phase behavior ver-
sus J=K shows interesting similarities to the high-Tc
cuprates, where the pseudogap phase intervening between
the antiferromagnetic and superconducting phases exhib-
its strong stripe correlations [31]. Although the micro-
scopic physics and symmetries are clearly different, a
detailed study of the staggered-striped transition may
still be useful in this context.

In spite of the absence of a spin liquid phase, the
presence of three distinct ordered ground states, and the
phase transitions between them, puts the J-K model (3) in
an important class among the basic quantum many-body
Hamiltonians. Although the interesting large-K=J region
247201-3
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may not be of direct relevance to real systems, we expect
this and the related model to be very useful as systems
where complex quantum states and quantum phase tran-
sitions can be further explored on large lattices without
approximations. Although other models, such as the frus-
trated J1-J2 Heisenberg model [30], may show similar or
potentially even more complex behavior, sign problems
affecting quantum Monte Carlo makes it difficult to
obtain conclusive results. It would clearly be interesting
to study also the J-K model with a positive sign for the K
term, in particular, to determine whether fractionalized
spin liquid phases could arise, but unfortunately this also
leads to sign problems.

The J-K model with the sign of K chosen here can be
modified in several interesting ways and still be easily
accessible to simulations using the SSE method. For
example, when relaxing the hard-core constraint there
should be a transition to an exciton Bose liquid [16], both
as a function of on-site repulsion U for large K=J and as a
function of K=J. It will also be interesting to include a
magnetic field to ‘‘dope’’ the striped and staggered
phases. Transitions between different charge-density
phases and the question of the existence of doped super-
solid phases have recently been studied numerically for
boson models where charge-density phases are stabilized
due to diagonal density-density interactions [32]. In con-
trast, the striped phase found here arises out of a com-
petition between two kinetic terms and it may hence
behave differently upon doping.
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