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Electrodynamics of a Coulomb Glass in n-Type Silicon
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Measurements of the complex frequency dependent conductivity of uncompensated n-type silicon are
reported. The experiments are done in the quantum limit, �h! > kBT, across a broad doping range on
the insulating side of the metal-insulator transition. The low energy linear frequency dependence is
consistent with theories of a Coulomb glass, but discrepancies exist in the relative magnitudes of the
complex components. At higher energies we observe a crossover to a quadratic frequency dependence
that is sharper than expected. The concentration dependence gives evidence that the Coulomb
interaction energy is the energy scale that determines this crossover.

DOI: 10.1103/PhysRevLett.89.246601 PACS numbers: 72.20.Ee, 71.30.+h, 71.45.Gm, 72.40.+w
concerned. In the opposite limit, �h! <U�r!�, the con-
ductivity of a Coulomb glass will show an approximately

gauge, and the concentration was determined using the
Thurber scale [9]. A number of samples were etched with
Doped semiconductors close to the metal-insulator
transition (MIT) are systems ideally suited for the study
of strong electron-electron interactions. Below a critical
doping the material is an insulator; i.e., at zero tempera-
ture there is no dc conductivity. The charge carriers are
localized in the Anderson sense, and screening is reduced
from the metallic regime.

Anderson coined the term Fermi glass to describe a
noninteracting disordered insulating system whose uni-
versal properties, independent of system specific details,
are determined by Fermi statistics alone [1]. Mott’s origi-
nal treatment of such a system [2], which has a finite
density of states at the Fermi level, but where localization
creates the insulating state, did not address the issue of
electron-electron interactions as pointed out by Pollak
[3], and then Efros and Shklovskii (ES) [4]. A Fermi glass
that includes interactions between localized electrons is
referred to as a Coulomb glass. Among other things, such
a system is typified by a depletion in the single particle
density of states around the Fermi level which was termed
by ES the Coulomb gap, � [5].

By taking into account the mean Coulomb interaction
between two sites forming a resonant pair U�r!� �
e2="1r!, where r! � �ln�2I0= �h!�� is the most probable
hop distance between pairs, I0 is the hopping attempt rate,
and "1 is the dielectric constant, ES derived the real part
of the ac conductivity of a Coulomb glass to be

�1 � �e2g20
5!�ln�2I0= �h!��4� �h!�U�rw��: (1)

Here � is a constant of order one, g0 is the noninteracting
density of states, and  is the localization length. This
formula takes on a different frequency dependence in two
limits. When the photon energy �h! > U�r!�, one recov-
ers the same quadratic frequency dependence that Mott
derived for a noninteracting Fermi glass. Here the
Coulomb glass is indistinguishable from the Fermi glass
in so far as the high frequency limit of the conductivity is
0031-9007=02=89(24)=246601(4)$20.00
linear dependence on frequency, plus logarithmic correc-
tions. The imaginary component of the complex conduc-
tivity, �2, as predicted by Efros [6], should be identical
to�1 up to a logarithmic factor.We should note that Eq. (1)
was derived for the case where �h! > �, the Coulomb gap
width. However, a linear dependence (albeit with addi-
tional logarithmic corrections) and an eventual crossover
to Mott’s noninteracting quadratic law is still expected
even for the case where �h! < �.

Despite its fundamental importance, there have been
very few ac conductivity studies that have been done in
the quantum limit �h! > kBT, yet at low enough frequen-
cies to probe the relevant energy ranges of Eq. (1). Only
very recently have measurements been attempted that
address these issues. Lee et al. found that for concentra-
tions close to the MIT the expected linear to quadratic
crossover occurs, but is much sharper than predicted [7].
Other recent work was done on amorphous NbSi, where
the general systematics of a linear in frequency Coulomb
glass response was found, but a crossover to the non-
interacting quadratic dependence was not reached [8].

In this Letter we report the first measurements of the
frequency dependent real and imaginary conductivity on
the insulating side of the MIT for a doped, crystalline
semiconductor. We find a concentration and frequency
dependence of these two components consistent with
predictions of a Coulomb glass, but a discrepancy arises
in the ratio of their relative magnitudes. At higher fre-
quencies a crossover to quadratic Mott-like behavior is
observed and due to having measured across a broad
dopant range, the concentration dependence of the cross-
over energy is shown to be consistent with the Coulomb
interaction energy U and not the Coulomb gap width �.

Nominally uncompensated n-type silicon samples
were obtained from Recticon Enterprises Inc. A boule
of silicon was grown using the Czochralski method
and sliced into 1 mm thick slabs. Room temperature
resistivity was measured using an ADE 6035 resistivity
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a 4%HF� 96%HNO3 solution; this resulted in no differ-
ence in the results of frequency dependent conductivity
measurements. The Si:P samples discussed in this Letter
span a range from 39% to 69%, stated as x

xc
, a percentage

of the sample’s dopant concentration to the critical con-
centration at the MIT.

At 35 and 60 GHz the real part of the conductivity was
evaluated from the measured loss of highly sensitive
resonant cavities via the perturbation method. The tech-
nique and analysis is well established [10]. In the milli-
meter spectral range, 80 GHz to 1 THz, backward wave
oscillators were employed as coherent sources in a trans-
mission configuration [11]. Fabry-Perot –like resonances
in the transmission were analyzed uniquely determining
both components of the complex conductivity. Cavity
measurements were performed down to 1.8 K and in the
millimeter spectral range down to 2.8 K. With these base
temperatures the quantum limit �h! > kBT (1 K �
20 GHz) of the system was being investigated.

The real part of the frequency dependent conductiv-
ity, �1, at T � 2:8 K for two samples is shown in Fig. 1.
These data, representative of all the samples, show an
approximately linear dependence at low frequencies and
then a sharp crossover to an approximately quadratic
behavior at higher frequencies. This is the qualitatively
expected behavior from Eq. (1). However, as seen by the
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FIG. 1. T � 2:8 K real part of the frequency dependent con-
ductivity versus frequency. The Si:P samples shown are 50%
and 69% dopant concentration relative to the critical concen-
tration, xc � 3:5	 1018 cm
3. The solid lines are linear and
quadratic fits to the lower and upper portions of the data,
respectively. The dotted line is a fit to the form of Eq. (1).
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overlayed fits, Eq. (1) provides only a rough guide. The
solid lines are linear and quadratic fits to the low fre-
quency and high frequency data, respectively. Individu-
ally these functions fit the data well; however, the full
crossover function does not. The dotted line is a fit using
the same method as Ref. [7], namely, forcing the linear
portion to pass through the origin as well as the low
frequency data and leaving the prefactor of the quadratic
term as a free variable. The crossover between linear and
quadratic portions is much more abrupt than the ES
function predicts and is observed over our entire doping
range as was observed previously in an analogous system,
Si:B, for samples closer to the MIT [7].

Having shown that the frequency dependence is quali-
tatively consistent with a Coulomb glass, we focus on the
low frequency regime. Both the real part and the magni-
tude of the imaginary part, j�2j of the complex conduc-
tivity are plotted as a function of frequency in Fig. 2. The
dotted lines are linear fits and show the relative increase
in the magnitude of both components as the MIT is
approached.
100

0.1

1

10-3

| σ
2| (

Ω
 c

m
)-1

 

Frequency (GHz)

     Si:P
 62%
 50%
 39%

σ 1 (
Ω

 c
m

)
 

 

FIG. 2. The real part and the magnitude of the imaginary
part of the optical conductivity for three different Si:P samples
on the insulating side of the MIT is shown. The stated percent-
ages are the sample’s dopant concentration relative to the
critical concentration. The dotted lines are linear best fits
showing the trend of increasing conductivity as the MIT is
approached. The error bars shown for �1 are representative of
those for all the data points. Some of the lower frequency points
were determined using resonant cavities at a base temperature
of 1.8 K.
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A complex conductivity obeying a power law can be
expressed in a simple Kramers-Kronig compatible form,
�1�!� � i�2�!� � A�i!��, in order to have an indepen-
dent means for determining the exponent. To determine
the power � one can utilize the ratio of j�2j versus �1

(with the frequency as a variable). The power � is
given by

� �
2

�
tan
1

 
j�2j

�1

!
: (2)

The uppermost panel in Fig. 3 shows the ratio of the
imaginary to the real part of the conductivity for Si:P.
NbSi is an amorphous insulating glass which is charac-
terized by a vastly higher density of states (DOS) at EF
[8]. Disorder should give a somewhat similar functional
dependence for the ac conductivity, but with very differ-
ent energy scales. Data are included from it as another
example of ac conductivity in a disordered system and for
comparison purposes, as Si:P has a very small DOS in its
impurity band. First we note that this ratio for Si:P
remains large and approximately constant across our
range of dopant concentrations. From theory, one expects
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FIG. 3. The upper panel shows the ratios of the magnitude
of the imaginary to the real part of the complex conductivity
for samples of Si:P and amorphous NbSi. The NbSi data are
adapted from Ref. [8]. The middle panel shows the calculated
powers of � as determined from Eq. (2). The dashed line
through the NbSi data is a guide to the eye. The bottom
panel shows the divergence of the localization length (using
I0 � 1013 s
1), and the dotted line is a power-law fit of
�1
 x=xc�


�, where � is found to be 0.95.
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j�1j to be approximately equal to j�2j to within a factor
of 2–5 (with a reasonable estimate for I0) as predicted by
Efros [6]. Applied to Si:P, Eq. (1) in the �h! <U�r!� limit
correctly predicts a linear correspondence between �1

and j�2j, but the theory incorrectly predicts the measured
proportionality by at least a factor of 30. The proportion-
ality is closer for NbSi but has a dependence on the
doping concentration. This may be related to entering
the quantum critical (QC) regime as discussed below.
Here we have used the susceptibility due to the interacting
electrons themselves 4�� � "1 
 "Si, namely, the full
measured dielectric constant, "1, minus the static back-
ground dielectric constant of the host silicon, "Si, to
determine the magnitude of the imaginary component
of the conductivity shown in Fig. 3. The magnitude of
the ratio becomes larger and the discrepancy even greater
if the full dielectric constant "1 is considered instead.

The middle panel of Fig. 3 shows the power � as
determined by Eq. (2). The values for Si:P are approxi-
mately equal to, but slightly less than, one, consistent
with Fig. 2. This indicates that the prefactor of the real
and imaginary components of the complex conductivity
has the same concentration dependence. When approach-
ing the MIT, the frequency dependence is expected to
cross over to the QC behavior [12,13], i.e., �1 / !1=2 in
NbSi, when the localization length  becomes compa-
rable to the characteristic frequency dependent length
scale, e.g., the dephasing length, ‘! [14]. The crossover
is not a phase transition and need not be sharp, therefore
looking at a fixed window of frequencies, a broad, smooth
crossover from ! ! !1=2 would show an averaged power
of the frequency dependence similar to that measured for
NbSi shown in the middle panel of Fig. 3. The fact that we
see an � � 1 across our whole doping range in Si:P, but an
� that approaches 0.5 in NbSi indicates that the critical
regime in Si:P is much narrower. Simple dimensional
arguments [15] give a result similar to the noninteracting
case [16] that the crossover should be inversely propor-
tional to the dopant DOS. The vastly smaller (a factor of
103) dopant density in Si:P relative to NbSi is consistent
with a narrower QC regime in Si:P.

Because our data span a large range of concentrations,
the doping dependence of the crossover energy scale from
linear to quadratic can be analyzed to see whether its
dependence is consistent with the functional form of other
energy scales, e.g., the Coulomb interaction energy U or
the Coulomb gap width �. Figure 4 shows data of our
experimentally determined crossover energy scale plotted
versus the commonly used functional form, 1
 x=xc.
Lee et al. performed ac conductivity measurements on a
pair of Si:B samples [7], and in said measurements, a
sharp crossover analogous to our own observations was
seen. Our data extend the observed range of the sharp
crossover deep into the insulating regime as the original
measurements of Lee et al. were closer to the critical
concentration.
246601-3
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FIG. 4. The experimentally determined crossover energy
scale is represented by the full circles with a fit to a power-
law function of the relative concentration �1
 x=xc�.
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Recall that the Coulomb interaction energy between
two sites forming a resonant pair is U�r!� � e2="1r!,
which is dependent on concentration via the dielectric
constant and the localization length dependent most prob-
able hop distance. The Coulomb gap width as determined
by ES [4] is � � e3g1=20 ="3=21 . Although Lee et al. postu-
lated that a smaller renormalized Coulomb gap governed
the crossover, it is not unreasonable to expect that this
gap scales with the ES single particle one as both are
presumably caused by the same long range Coulomb
interaction. The magnitude of the gap width is dependent
on concentration through the dielectric constant and
through the DOS term. Thus it is clear that a separate
measurement of the full dielectric constant, "1 as a func-
tion of concentration, as we have done, needs to be
performed in order to analyze the crossover energy scale.
Although there is no expectation for !c or � to scale as a
power law over the whole doping range, we may still
parametrize these quantities over our doping range as
power laws. We find that the crossover frequency !c is
proportional to �1
 x=xc�1:65, and the full dielectric con-
stant "1 / �1
 x=xc�
0:4. Using these values, it seems
highly unlikely that �h!c � �, as the required concen-
tration dependence of the DOS for this to be valid seems
improbable.

In contrast, we do find strong support that the crossover
energy is determined by the Coulomb interaction energy.
By setting the measured crossover energy scale equal to
the Coulomb interaction energy we are able to determine
both the magnitude of the localization length and the
exponent with which it diverges as a function of concen-
tration. Using an appropriate prefactor for the overlap
integral [17], I0 � 1013 s
1 in the most probable hop
distance term, r!, we find a localization length depen-
dence as plotted in the bottom panel of Fig. 3. The local-
ization length exponent is found to be close to unity, the
value originally predicted by McMillan in his scaling
246601-4
theory of the MIT [18], and the magnitude of the local-
ization length is reasonable. Both these results strongly
point towards the Coulomb interaction energy as being
the energy scale at which the observed frequency depen-
dent crossover from ES to Mott-like hopping conduction
occurs.

In summary, we have observed behavior consistent
with a Coulomb glass across our entire range of doping
concentrations in Si:P for the frequency and concentra-
tion dependence of the real and imaginary components
of the conductivity. It is consistent with theoretical
predictions except in predicting the relative magnitudes
of �1 and �2 and the sharper than expected crossover
from linear to quadratic frequency dependence. From
the expected form of U�x� and the reasonable behavior
of the extracted localization length, it seems likely that
the crossover is governed by the Coulomb interaction
strength of a resonant pair and not the Coulomb gap.
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