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Non-Gaussian Nature of the � Relaxation of Glass-Forming Polyisoprene
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We report quasielastic neutron scattering experiments exploring the � relaxation in polyisoprene over
an unprecedented range in momentum transfer. Corroborating and validating earlier molecular
dynamics simulations, the measurements reveal a crossover from a Gaussian regime of sublinear
diffusion to a strongly non-Gaussian regime at short distances. We show that a consistent interpretation
in terms of a distribution of finite jumps underlying the � process is possible. This model leads to a time-
dependent non-Gaussian parameter exhibiting all features revealed so far from various simulations.
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molecular dynamics simulations on a polyisoprene melt Ss�Q;!�. Figure 1 displays some representative NSE and
The heterogeneity in the dynamics of undercooled
liquids and, connected with it, the deviations from Gauss-
ianity of the dynamic correlation functions is an issue of
long-standing interest and one of the challenges along the
way to understand glass formation. Recently, the main
dynamical process, the � relaxation, came into focus.
Computer simulations as well as various experimental
techniques have provided different and partially conflict-
ing evidence for heterogeneous behavior or the absence of
it (see, e.g., [1] and references therein). Dynamical hetero-
geneities are often discussed in terms of the Gaussian
character of the van Hove self-correlation function
Gs�r; t� of the moving atoms. Gs�r; t� is the probability
to find an atom at time t at a position ‘‘r’’ if it was at r � 0
for t � 0. For simple diffusive motion Gs�r; t� is a Gauss-
ian function, but complex, e.g., heterogeneous, dynamics
may cause deviations from Gaussian behavior.

Incoherent neutron scattering (NS) experiments di-
rectly reveal the Fourier transform of Gs�r; t�: the inter-
mediate scattering function Fs�Q; t� or the dynamic
structure factor Ss�Q;!�, where Q � 4� sin��=2�=�
(�: neutron wavelength; �: scattering angle) is the mo-
mentum transfer and "! the energy transfer during scat-
tering. For the � relaxation Fs�Q; t� assumes the form of a
Kohlrausch-Williams-Watts (KWW) function

Fs�Q; t� � A exp

�
�

�
t
�w

�
�
�
; (1)

where A is a Lamb-Mössbauer factor (LMF), �w the Q
dependent KWW-relaxation time, and �< 1 the stretch-
ing exponent. A Gaussian correlation function implies a
relation between the Q dependence of �w and � as �w �
Q�2=� [2]. Extensive NS experiments on many different
polymers have verified this Gaussian relationship in the
low Q regime (Q & 1 �A�1) [3]. However, very recent
0031-9007=02=89(24)=245701(4)$20.00
(PI) revealed a clear crossover from �w �Q�2=� to �w �
Q�2 [4] at Q � 1:3 �A�1. Furthermore, it was found to be
connected with a strong increase of the non-Gaussian
parameter

�2�t� �
3

5

hr4�t�i

hr2�t�i2
� 1; (2)

where hr2ni are moments of Gs�r; t�.
This Letter reports a quasielastic NS approach to study

the characteristic time �w�Q� in PI in a very extended Q
range (0:1 	 Q 	 4:7 �A�1). The measurements reveal a
crossover in �w�Q� in perfect agreement with the simu-
lation results. The Q dependence of �w�Q� is described in
terms of a jump length distribution underlying the sub-
linear diffusion present in the � process. We find that this
simple approach accounts for all universal features of
�2�t� reported so far in the literature for glass-forming
systems in general.

A monodisperse PI sample with deuterated methyl
groups was investigated: �
CH2 � CH � C�CD3� �
CH2��n (PId3). The scattering is thus dominated by the
very high incoherent cross section of the hydrogens along
the main chain and effects from the methyl group motions
are avoided. To cover very wide Q range and connected
with it a huge dynamical range, we combined (i) the
Jülich neutron spin echo (NSE) instrument (100 ps 	 t 	
22 ns; 0:1 	 Q 	 0:3 �A�1; T � 340 K), (ii) the NSE
spectrometer IN11c (8:4 ps 	 t 	 1:4 ns; 0:34 	 Q 	
1:68 �A�1; T � 280, 300, 320, and 340 K), and (iii) the
thermal backscattering (BS) instrument IN13 for the
coverage of high Q values 1:2 	 Q 	 4:7 �A�1 (resolu-
tion: 10 �eV, energy window: �130 �eV 	 "! 	
100 �eV; T � 260, 280, and 300 K). IN11c and IN13
are located at the Institute Laue Langevin in Grenoble.
NSE instruments reveal Fs�Q; t� and IN13 measures
 2002 The American Physical Society 245701-1
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BS spectra. While the NSE results are already corrected
for the instrumental resolution function (simple divi-
sion), the spectra at IN13 contain it [dotted line in
Fig. 1(b)] in the form of a convolution with Ss�Q;!�.
The results were analyzed in terms of KWW functions
[Eq. (1)]. For the IN13 spectra the Fourier transform of
the KWW function was used.

As first ingredient, a KWWanalysis requires the deter-
mination of the stretching parameter � — in NS a noto-
riously difficult task which, due to the convolution
problems, is hardly feasible on the basis of the BS data.
At low T, dielectric measurements reveal 0:39 	 � 	
0:40 in good agreement with previous NSE data on the
collective relaxations of fully deuterated PI close to the
first maximum of the static structure factor Qmax (Qmax �
1:3 �A�1) (T � 280 K: � � 0:43� 0:03) [5]. The same
data reveal � � 0:55� 0:025 at 320 K. At 340 K the
high quality of the Jülich NSE data [Fig. 1(a)] allows
for an independent fit revealing � � 0:57� 0:08. Thus, �
changes with temperature. On the basis of the data at hand
for the further evaluation, we interpolated � to � � 0:40
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FIG. 1. Spectra obtained for PId3 (a) by the Jülich NSE at
340 K and Q � 0:10, 0.15, 0.20, and 0:30 �A�1 (top to bottom),
and (b) by IN13 at 2:9 �A�1 and 300 K. Solid lines correspond to
KWW descriptions with � � 0:57 (a) and � � 0:50 (b). The
dotted line shows the IN13 instrumental resolution function
obtained at 1.5 K.

245701-2
for 260 and 280 K, � � 0:50 for 300 K, � � 0:55 for
320 K, and � � 0:57 for 340 K and kept it fixed.With this
choice of � a good description of all data is obtained (e.g.,
solid lines in Fig. 1). The spectral amplitudes deduced
from IN13 follow a LMF form: A� exp��hu2iQ2=3�,
where hu2i is the mean squared displacement (MSD)
associated with the fast process. The fit results are hu2i �
0:43� 0:02 �A2 at 260 K, 0:55� 0:02 �A2 at 280 K, and
0:58� 0:01 �A2 at 300 K. The resulting characteristic
times are displayed in Fig. 2(a). A strong decrease of �w
with increasing Q takes place. It is noteworthy that at
300 K a very wide Q range (0:34 	 Q 	 4:7 �A�1) has
been covered by the combination of IN13 and IN11c mea-
surements; in this Q range, �w�Q� spread over almost four
decades and both sets of data join perfectly. At 280 K the
dynamics becomes too slow to be well characterized in
the low Q range. The Q dependence of �w in this range has
nevertheless been perfectly determined for 340 K: com-
bining the results of both NSE machines, the full decade
0:1 	 Q 	 1 �A�1 has been covered.

To scrutinize the Gaussian character of Gs�r; t�, in
Fig. 2(a) we have compared the Q-dependent character-
istic times with the Gaussian prediction �w �Q�2=�

(solid lines). As the value of � slightly increases with T,
the slopes of the predicted power laws decrease in
absolute value towards higher temperatures. Figure 2(a)
shows that in each case the Gaussian prediction describes
10-2

10-1

100

101

102

τ w
(n

s)

(a)101

102

10-1

100

101

102

0.1 1

τ w
(n

s)
 β

/a
T

Q (Å
-1

)

(b)

10-1

100

FIG. 2. (a) Q dependence of �w obtained for PId3 by IN13
(: 260 K; �: 280 K; �: 300 K), IN11c (4: 280 K; }: 300 K;
�: 320 K; �: 340 K) and Jülich NSE spectrometer (� : 340 K).
(b) Master curve built with the data in (a) (see the text). The
straight solid lines display the Q dependence expected from the
Gaussian approximation. The dashed line shows the description
of the master in terms of the anomalous jump diffusion model
[Eq. (4)] with ‘0 � 0:42 �A.

245701-2



10-2

10-1

100

101

102

103

0

0.1

0.2

0.3

0.4

0.5

10-2 10-1 100 101 102 103 104

<
r2 (t

)>
 (

Å
2 )

α
2 (t)

t (ps)

FIG. 3. Time evolution of hr2i (�) and �2 (�) obtained from
the simulations at 363 K for the main chain protons [4]. The
anomalous jump diffusion model with the parameters deduced
from the experimental data at 320 K yields the functions
displayed as lines: solid for hr2i and dash-dotted for �2.
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very well the Q dependence of the experimentally deter-
mined �w in the range Q & 1 �A�1 for T � 300 K and is
compatible with the results at 280 K. However, above
1 �A�1 the times deviate and follow a weaker Q depen-
dence. In Fig. 2(b) all data from Fig. 2(a) are condensed
to a single master curve. This is done, first of all, by
exponentiating �w�Q� to the power of �. According to
the Gaussian prediction ��w �Q�2, and the effect of the
change of � is eliminated. Secondly, the T dependence is
removed applying shift factors aT relative to a reference
temperature TR [300 K in Fig. 2(b)] to the results corre-
sponding to the different temperatures. Within the ex-
perimental uncertainties, the coincidence of the different
data is nearly perfect by applying similar shift factors to
those obtained from earlier coherent NSE data close to
Qmax and dielectric results [5]. A Q�2 dependence of ��w
is obtained at low Q, crossing over to a weaker power
law at Q � 1:3 �A�1. Thus, covering the largest Q� t
range ever in a single NS experiment, we have experi-
mentally established a crossover from Gaussian to non-
Gaussian character of the � relaxation similar to that
reported for the simulated sample [4]. Indications of
deviations from Gaussian behavior at Q� 1 �A�1 can
also be found in experimental works on polyisobutylene
[6] and poly(vinyl methyl ether) [7].

The likely origin of the deviation from Gaussianity at
short length scales will be discussed using recent simu-
lation results of the PI dynamics [4]. Therefore, an ex-
perimental validation of these simulations is essential.
The detailed comparison will be published elsewhere.
Here, we note that the experimentally determined �w�Q�
agree quantitatively with those obtained from the simu-
lation if the latter are shifted by about 40 K to lower T.
Moreover, the value of � obtained from the simulations
also changes with T, although at 363 K — corresponding
to the experimental results at 320 K —� � 0:4, and the
reduction of stretching occurs only at higher T.

In jump diffusion models, finite jump lengths tend to
cause a bending of the dispersion for the diffusive relaxa-
tion times away from the Q�2 law which is valid for
simple diffusion at low Q. Can such an explanation also
be invoked for the interpretation of our data? The jump
diffusion model (see, e.g., [8]) assumes that an atom
remains in a given site for a time �0, where it moves
around a center of equilibrium. After �0, it moves rapidly
to a new position located at a distance ~‘‘ with respect to
the original site. For such a process, the incoherent inter-
mediate scattering function has the form

FJD
s �Q; t� � exp

�
�

hu2i
3

Q2 � b�Q�

�
t
�0

�
�
�
; (3)

where b�Q� depends on the particular geometry of the
jumps involved, i.e., on the vectors ~‘‘, and � � 1.
Assuming randomly oriented jump directions with an
exponential distribution of jump lengths f0�‘� � ‘‘�2

0 
exp��‘=‘0�, where ‘0 is the most likely jump distance,
b�Q� � Q2‘20�1�Q2‘20�

�1. Note that for Q‘0 ! 0,
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b�Q� ! Q2‘20. In that limit, FJD
s �Q; t� has a Gaussian form

with an associated MSD that increases linearly with time.
Glass-forming systems exhibit KWW forms for Fs�Q; t�
[Eq. (1)]. An incoherent scattering function analogous to
that for the simple jump diffusion [Eq. (3)] may be built
by introducing the stretching in the time-dependent part
(�< 1). In this way, in the limit Q‘0 ! 0 the Gaussian
approximation is recuperated; but now a sublinearly in-
creasing MSD would be obtained for small Q values, as
observed from experiments and simulation. By compar-
ing Eqs. (1) and (3), �w reads

�w � �0

�
1�

1

Q2‘20

�
1=�

: (4)

Equation (4) provides a good description of the experi-
mental results displayed in Fig. 2(b) (dashed line). At
TR � 300 K we find �0 � 27:9 ps and ‘0 � 0:42 �A,
the latter being T independent within the uncertainties.
Obviously, the experimental results are compatible with a
scenario of sublinear diffusion for the segmental relaxa-
tion with an underlying distribution of elemental jump
lengths with a most probable value of ‘0 � 0:42 �A.

The simulations have shown that deviations of �w�Q�
from the Gaussian Q�2=� law set in, if �w�Q� reaches a
time regime where �2�t� becomes significantly different
from zero. While it is very difficult to extract �2 directly
from the experimental data, it is easily calculated in the
simulation. Figure 3 displays the simulation results for �2

together with the time-dependent MSD hr2�t�i [4].
Within the jump diffusion approach, �2 may be cal-

culated straightforwardly. Starting from Eq. (3) and in-
serting b�Q�, we may expand with respect to Q2‘20. The
result may be directly compared with the general expres-
sion for the expansion of Fs�Q; t� with respect to Q [9],
Fs�Q; t� � exp
�hr2�t�iQ2=6��2�t�hr

2�t�i2Q4=72� . . .�
revealing

hr2�t�i � 2hu2i � 6‘20

�
t
�0

�
�
; (5)
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FIG. 4. Time evolution of �2 multiplied by the time as
obtained from the model of anomalous jump diffusion with
the parameters experimentally deduced for PI at the different
temperatures investigated (top to bottom: 260, 280, 300, 320,
340 K). The inset displays the T dependence of t� (�), �0 (�),
and �w�Q � 0:9 �A�1� (�).
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�2�t� �
72‘40�

t
�0
��


2hu2i � 6‘20�
t
�0
���2

: (6)

For a comparison with the simulation which corre-
sponds to an experimental temperature of 320 K, we
extrapolate the hu2i from IN13 linearly resulting in
hu2i � 0:66 �A2. Shifting �0 to 320 K yields �0 � 1:3 ps
when imposing � � 0:4 (the value obtained from the
simulations). With these parameters, hr2i and �2�t� are
calculated using Eqs. (5) and (6). The results are displayed
in Fig. 3 and show a behavior similar to that of the simu-
lations for times longer than the microscopic times. At
shorter times, hu2i becomes time dependent and the jump
diffusion approach breaks down. The good agreement
suggests that at least to a reasonable approximation the
non-Gaussianity observed for the � process at short
enough times finds a simple explanation in terms of a
sublinear diffusion process (Q�2=� regime) with a distri-
bution of finite jump lengths. This process, being hetero-
geneous at short length scales (high Q), becomes
homogeneous at larger scales (low Q). This interpretation
is qualitatively compatible with the mode coupling
theory. The jumps leading to the sublinear diffusion
would correspond to the dynamics allowing the decaging
mechanism. It is worth remarking that the value found for
‘0 � 0:42 �A is in the range of that estimated from the
simulations for the mean characteristic localization
length rsc � 0:45 �A [4].

We now exploit the model further, in order to see
whether it is able to reproduce the main conjectures on
�2�t� that are reported in the literature from simulations
of glass-forming systems in general (see, e.g., [10–14]).
These are (i) the time t� where the maximum of �2 occurs
approximately shifts with �w; (ii) the magnitude of �2

increases with decreasing T; and (iii) in the asymptotic
short time limit t�2�t� � t3=2. From Eq. (6) it is straight-
245701-4
forward to calculate t� as the time where �2�t� exhibits its
maximum. We arrive at t� � �0hu

2i1=��3‘20�
�1=�. Given

the weak T dependencies of hu2i and �, to a good ap-
proximation the thermal behavior of t� follows that of �0
[which is similar to that of �w; see Eq. (4)]. Inserting the
experimental parameters for PI which are determined in
this work, we find the T dependencies of t�, �0, and �w
which are shown in the inset of Fig. 4. We note that t�

agrees nearly quantitatively with the jump time �0 — a
very remarkable result. Furthermore, �max

2 � �2�t
�� �

3‘20�2hu
2i��1 is obtained from Eq. (6). With ‘0 � const

and hu2i decreasing linearly with T, �max
2 increases sig-

nificantly with decreasing temperature. In the experimen-
tal range, our data predict �max

2 �340 K� � 0:34 and
�max
2 �260 K� � 0:62. Finally, Fig. 4 explores the predic-

tion of Ref. [10]: the collapse of t�2�t� in the short time
regime to a universal function proportional to t3=2. It is
evident that this simple jump model also accounts for this
very general feature. Seemingly, this approach captures
universal properties shown by so different glass-forming
systems as orthoterphenyl, water, polymers, selenium,
and Lennard-Jones liquids.
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