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Adhesion between Elastic Bodies with Randomly Rough Surfaces
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I have developed a theory of adhesion between an elastic solid and a hard randomly rough substrate.
The theory takes into account the fact that partial contact may occur between the solids on all length
scales. I present numerical results for the case where the substrate surface is self-affine fractal. When the
fractal dimension is close to 2, complete contact typically occurs in the macroasperity contact areas. For
a fractal dimension larger than 2.5, the area of (apparent) contact decreases continuously when the
magnification is increased.
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FIG. 1. A rubber block (dotted area) in adhesive contact with
a hard rough substrate (dashed area). The substrate has rough-
ness on many different length scales and the rubber makes
partial contact with the substrate on all length scales. When a
contact area is studied at low magnification it appears as if
complete contact occurs, but when the magnification is in-
� � L=� (where � � 1), with P�1� � 1. Here A�L� � A0

denotes the macroscopic (nominal) contact area [L is
creased it is observed that, in reality, only partial contact
occurs.
Even a highly polished surface has surface roughness
on many different length scales. When two bodies with
nominally flat surfaces are brought into contact, the area
of real contact will usually be only a small fraction of the
nominal contact area.

How large is the area of real contact between a solid
block and the substrate? This fundamental question has
extremely important practical implications. For example,
it determines the contact resistivity and the heat transfer
between the solids. It is also of direct importance for
sliding friction [1,2], e.g., the rubber friction between a
tire and a road surface, and it has a major influence on the
adhesive force between two solid blocks in direct contact.
I have developed a theory of contact mechanics [3], valid
for randomly rough (e.g., self-affine fractal) surfaces, but
neglecting adhesion (see also [4]). In this Letter, we con-
sider adhesion for randomly rough surfaces for the most
general case where partial contact occurs at the interface
on many different length scales; see Fig. 1.

The influence of surface roughness on the adhesion
between rubber (or any other elastic solid) and a hard sub-
strate has been studied in a classic paper by Fuller and
Tabor [5] (see also [6–9]). They found that even a relative
small surface roughness can remove the adhesion com-
pletely. In order to understand the experimental data, they
developed a very simple model based on the assumption
of surface roughness on a single length scale. However,
when roughness occurs on many different length scales, a
qualitatively new picture emerges.

The present theory is based on the contact mechanics
theory developed in Refs. [3,9]. This theory recognizes
that it is essential not to exclude a priori any roughness
length scale from the analysis. Thus, if A��� is the (appar-
ent) area of contact on the length scale � [more accurately,
we define A��� to be the real contact area (projected on
the xy plane) if the surface would be smooth on all length
scales shorter than �], then we study the function P��� �
A���=A�L�, which is the relative fraction of the rubber
surface area where contact occurs on the length scale
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the diameter of the macroscopic contact area so that
A0 � L2].

Consider a rubber ball (radius R0) in adhesive contact
with a perfectly smooth and hard substrate. The elastic
deformation of the rubber can be determined by mini-
mizing the total energy, which is the sum of the (positive)
elastic energy stored in the deformation field in the rubber
ball and the (negative) binding energy between the ball
and the substrate at the contact interface. The free energy
minimization gives the Johnson-Kendall-Roberts pulloff
force [10]: Fc � �3�=2�R0��, where �� � �1 � �2 �
�12 is the change in the surface free energy (per unit
area) upon contact due to the rubber-substrate interaction.
Consider now the same problems as above, but assume
that the substrate surface has roughness described by the
function z � h�x� and that the width L of the nominal
contact area is much larger than the long-distance cutoff
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(or rolloff) length �0 of the surface roughness power
spectra. In this case, we can still use the result for Fc

above (even when only partial contact occurs at the inter-
face), but with �� replaced by �eff�1� given below.

Consider the system at the length scale � � L=� , where
L is of order the diameter of the nominal contact area. We
define qL � 2�=L and write q � qL� . Let P��; �� denote
the stress distribution in the contact areas under magni-
fication � . The function P��; �� satisfies the differential
equation (see Ref. [3]):
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where E is the elastic modulus and � the Poisson ratio.
The surface roughness power spectra
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where z � h�x� is the height of the surface above a flat
reference plane (chosen so that hhi � 0), and h
 
 
i stands
for ensemble average.

The relative (apparent) area of contact (projected on
the surface xy plane) when the system is studied under the
magnification � can be written (see Ref. [3]):

P��� �
Z 1

��a

d�P��; �� � 1�
Z �

1
d� 0S�� 0� ; (4)

where the detachment stress �a � �a��� is defined below.
S��� can be obtained by solving Eq. (1) subjected to the
boundary conditions:
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P��a���; �� � 0 ; P�1; �� � 0 : (5)

These equations state that detachment occurs when the
local stress on the length scale L=� reaches ��a��� and
that there is no infinitely large stress at the interface.

Let us consider the system on the characteristic length
scale � � L=� . The quantity �a��� is the stress necessary
to induce a detached area of width � and can be obtained
from standard arguments related to a penny-shaped crack
of diameter � [11]:
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where q � 2�=� � �qL. Here �eff���, the change in the
effective surface energy upon contact, is given by
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where

�2 �
Z
d2qq2C�q�; (8)

and � � 4�1� �2���=E. The first term on the right-hand
side in Eq. (7) is the contribution from the adhesional
interaction (which depends on the area of real contact)
[12] and the second term is the elastic energy stored at the
interface. In the limiting case P��� � 1 (complete con-
tact), Eq. (7) reduces to the result derived in Ref. [9].

If we assume a constant external pressure �0 in the
nominal contact area, then P��; 1� � ���� �0�. From
Eqs. (1)–(4) one can show that
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where
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Equation (9) is a linear integral equation for S��� which is
easy to solve by matrix inversion.

Let us first assume that �a��� is independent of � . In
this case (4) and (9) gives
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where G��� � a���=��0 � �a�
2. We note that, for small

effective loading pressure �0 � �a, we have G� 1 for
large enough � , and in this case only x�1 will contribute
to the integral in (11) and we can replace sinx�x to
obtain P�����G�����1=2��0��a. Thus, in this limit
the area of real contact is proportional to the sum of the
applied pressure �0 and the ‘‘adhesion’’ pressure �a. This
result has often been used [13], e.g., in discussing friction,
but we point out that it is valid only when �a��� is
independent of � . This will never be the case when sur-
face roughness occurs on many different length scales.

Let us now present numerical results obtained from (4)
and (6)–(10) by iteration. We assume that the rough sur-
face is self-affine fractal [14] with the Hurst exponent H
corresponding to the fractal dimension Df � 3�H. We
consider first the case H � 0:8 or Df � 2:2, which is
typical for many surfaces of practical interest, e.g., sur-
faces prepared by fracture or sandblasting, and we assume
that the surface is self-affine over two decades in length
scales, q0 < q< q1, where q0 � 0:01q1. Thus, the maxi-
mum magnification �1 � q1=q0 � 100 and the area of
real contact A0P��1� is determined by studying the system
at this magnification.

Figure 2 shows (a) the effective interfacial energy
�eff�1� and (b) the normalized area of real contact,
P��1� � A��1�=A0, as a function of q0h0. Results are
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FIG. 3. (a) The macroscopic interfacial energy as a function
of q0h0. (b) The normalized area of real contact, P��1� �
A��1�=A0, as a function of q0h0. The curves denoted by a and b
correspond to the external pressure �0 � 0:05E=�1� �2� and
�0 � 0, respectively. In (b) the dashed line is for no adhesion
(i.e., �� � 0) and for the same external pressure as for curve a.
For H � 0:8 and q0� � 0:1.
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FIG. 2. (a) The macroscopic interfacial energy as a function
of q0h0. (b) The normalized area of real contact, P��1� �
A��1�=A0, as a function of q0h0. For q0� � 0:1, 0.2, 0.4, and
0.8 as indicated, and with H � 0:8 and �0 � 0.
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shown for q0� � 0:1, 0.2, 0.4, and 0.8. We refer to �eff�1�
at the magnification � � 1 as the macroscopic interfacial
free energy which can be deduced from, e.g., the pull-
off force for a ball using Fc � �3�=2�R0�eff�1�. Note that
for q0� � 0:4 and 0.8 the macroscopic interfacial energy
first increases with increasing amplitude h0 of the sur-
face roughness (we define h20 � 2hh2i) and then decreases.
The increase in �eff arises from the increase in the surface
area. As shown in Fig. 2(b), for small h0 the two solids are
in complete contact, and, as expected, the complete con-
tact remains to higher h0 as �� ��=E increases. Note
also that the contact area is nonzero even when �eff�1� is
virtually zero: the fact that �eff�1� (nearly) vanishes does
not imply that the contact area vanishes (even in the
absence of an external load), but implies that the (posi-
tive) elastic energy stored at the interface just balances
the (negative) adhesion energy from the area of real
contact. The stored elastic energy at the interface is given
back when the block is removed, and when �eff�1� � 0, it
is just large enough to break the block-substrate bonding.

Figure 3 shows (a) the macroscopic interfacial energy
and (b) the normalized area of real contact, P��1� �
A��1�=A0, as a function of q0h0. The curves denoted
by a and b correspond to the external pressure �0 �
0:05E=�1� �2� and �0 � 0, respectively. In 3(b) the
dashed line is for no adhesion (i.e., �� � 0) and for
the same external pressure as for curve a. Note that,
with increasing h0, the area of real contact (when adhe-
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sion is included) only very slowly approaches the contact
area that would result when the adhesion is neglected
(dashed line). Since it is the area of real contact that is
important in sliding friction, it is clear that the adhesion
interaction may affect the friction force strongly even
when no adhesion can be detected in a pulloff experiment;
in the present case �eff�1� and, hence, the pulloff force
vanish when q0h0 � 0:3. However, even when q0h0 �
0:5, the area of real contact is more than twice as large
when the adhesion is included as when it is neglected. The
variation of P��� and �eff��� with the magnification � is
shown in Fig. 4, for the same parameters as in Fig. 3 and
for q0h0 � 0:24. Figure 4(a) shows the dependence of
P��� on the magnification � . Results are shown both
with and without the adhesion interaction. Note that,
without the adhesion, P��� decreases monotonically
with increasing magnification, and, in fact, without a
short-distance cutoff, the area of real contact [corre-
sponding to P�1�] vanishes. When adhesion is included,
the (apparent) area of contact equals the area of real
contact already at a rather small magnification � � 10.
This is only the case when the fractal dimension is close
to 2; in Fig. 4 we have assumed Df � 2:2. For a large
245502-3
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FIG. 4. The dependence of (a) the normalized (apparent) area
of contact and (b) the effective interfacial energy, on the
magnification � . Results are shown with and without the
adhesion interaction. � � 1 correspond to the long-distance
cutoff length �0 in the fractal distribution. For the same
parameters as in Fig. 3 and for q0h0 � 0:24.
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fractal dimension, e.g., 2.6, the area of (apparent) contact
decreases continuously with increasing magnification
and, in fact, probably vanishes at infinite magnification
(assuming no short-distance cutoff), in accordance with
the qualitative discussion presented elsewhere [9].

Figure 4(b) shows the effective interfacial energy as a
function of the magnification � . Note that at short length
scales (large �) �eff��� increases with decreasing magni-
fication. This effect results from the increase in the sur-
face area because of the surface roughness. However, at
long length scales �eff��� decreases below ��. This effect
results from the contribution to the interfacial free energy
from the elastic deformation energy induced in the rubber
by the substrate surface roughness. Note also that �eff at
the shortest length scale (which in the present case cor-
responds to the magnification � � 100) equals the ‘‘bare’’
value �� as it should.

The results presented in Fig. 2 are in good qualitative
agreement with the experimental data of Fuller, Tabor,
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Briggs, Briscoe, and Roberts [5–7]. Unfortunately, those
authors did not measure the surface roughness power
spectra, so no quantitative comparison is possible. We
also note that, for rubber materials, the adhesion experi-
ments must be performed extremely slowly in order to
reduce the influence of viscoelastic effects [15].

To summarize, we have studied the influence of surface
roughness on the adhesion of elastic solids. The theory
allows for partial block-substrate contact on all length
scales, which is particularly important for large fractal
dimension [16].
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