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An adaptive dynamic state feedback controller for stabilizing and tracking unknown steady states of
dynamical systems is proposed. We prove that the steady state can never be stabilized if the system and
controller in sum have an odd number of real positive eigenvalues. For two-dimensional systems, this
topological limitation states that only an unstable focus or node can be stabilized with a stable
controller, and stabilization of a saddle requires the presence of an unstable degree of freedom in a
feedback loop. The use of the controller to stabilize and track saddle points (as well as unstable foci) is
demonstrated both numerically and experimentally with an electrochemical Ni dissolution system.

DOI: 10.1103/PhysRevLett.89.244103

Control of dynamical systems is a classical subject in
engineering science [1]. The revived interest of physicists
in this subject started with an observation that chaotic
motion can be converted to any of a large number of
periodic motions via stabilization of unstable periodic
orbits embedded in a chaotic attractor [2]. A number of
new control techniques that use only small feedback
perturbations and do not require a knowledge of the
model equations have been developed in the field of
controlling chaos. One of the most popular is the time-
delayed feedback control method [3]. The method has
been successfully implemented in quite diverse experi-
mental contexts. However, Nakajima [4] proved a topo-
logical limitation that the method cannot stabilize
torsion-free periodic orbits or, more precisely, orbits
with an odd number of real positive Floquet exponents.
To overcome this limitation, one of us has recently sug-
gested the introduction of an unstable degree of freedom
into a feedback loop [5].

Although the field of controlling chaos deals mainly
with the stabilization of unstable periodic orbits, the
problem of stabilizing unstable steady states of dynamical
systems is of great importance for various technical
applications. Stabilization of a fixed point by usual meth-
ods of classical control theory requires a knowledge of its
location in the phase space. However, for many complex
systems (e.g., chemical or biological), the location of the
fixed points, as well as exact model equations, are un-
known. In this case, adaptive control techniques capable
of automatically locating the unknown steady state are
preferable. An adaptive stabilization of a fixed point can
be attained with the time-delayed feedback method
[3,6,7]. However, the use of time-delayed signals in this
problem is not necessary, and thus the difficulties related
to an infinite dimensional phase space due to delay can be
avoided. A simpler adaptive controller for stabilizing
unknown steady states can be designed on a basis of
ordinary differential equations (ODEs). The simplest ex-
ample of such a controller utilizes a conventional low-

244103-1 0031-9007/02/89(24)/244103(4)$20.00

PACS numbers: 05.45.Gg, 82.40.Bj, 82.45.Qr

pass filter described by one ODE. The filtered dc output
signal of the system estimates the location of the fixed
point, so that the difference between the actual and fil-
tered output signals can be used as a control signal. An
efficiency of such a simple controller has been demon-
strated for different experimental systems [7]. Further
examples involve methods which do not require knowl-
edge of the position of the steady state but result in a
nonzero control signal [8].

In this Letter, we introduce a generalized adaptive
controller described by a system of ODEs and prove that
it has a topological limitation concerning an odd number
of real positive eigenvalues of the steady state. We show
that the limitation can be overcome by implementing an
unstable degree of freedom into a feedback loop. The
feedback produces a robust method of stabilizing a priori
unknown unstable steady states, saddles, foci, and nodes.

Simple example—An adaptive controller based on the
conventional low-pass filter, successfully used in several
experiments [7], is not universal. This can be illustrated
with a simple model:

x=Ax—=x*)+ klw — x), w=Aw-—x). ()

Here x is a scalar variable of an unstable one-dimensional
dynamical system x = A*(x — x*), A* > 0 that we intend
to stabilize. We imagine that the location of the fixed point
x* is unknown and use a feedback signal k(w — x) for
stabilization. The equation w = A°(w — x) for A¢ <0
represents a conventional low-pass filter (rc circuit) with
a time constant 7 = —1/A¢. The fixed point of the closed
loop system in the whole phase space of variables (x, w) is
(x*, x*) so that its projection on the x axes corresponds to
the fixed point of the free system for any control gain k. If
for some values of k the closed loop system is stable, the
controller variable w converges to the steady state value
w* = x* and the feedback perturbation vanishes.

The closed loop system is stable if both eigenvalues
of the characteristic equation A% — (A* + A — k)A +
ASA¢ = 0 are in the left half-plane ReA < 0. The stability
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conditions are k > A5 + A°, ASA¢ > 0. We see immedi-
ately that the stabilization is not possible with a conven-
tional low-pass filter since for any A* >0, A° <0, we
have A*A¢ <0 and the second stability criterion is not
met. However, the stabilization can be attained via an
unstable controller with a positive parameter A€.
Electronically, such a controller can be devised as the rc
circuit with a negative resistance. Figure 1 shows a
mechanism of stabilization. For k = 0, the eigenvalues
are A* and A¢, which correspond to the free system and
free controller, respectively. With the increase of k, they
approach each other on the real axes, then collide at k =
k; and pass to the complex plane. At k = k; they cross
symmetrically into the left half-plane (Hopf bifurcation).
At k = k, we have again a collision on the real axes and
then one of the roots moves towards —oo and another
approaches the origin. For k > k, the closed loop system
is stable. An optimal value of the control gain is k, since it
provides the fastest convergence to the fixed point.

Generalized adaptive controller—Now we consider
the problem of adaptive stabilization in general. Let

x = flx, p) )

be the dynamical system with N-dimensional vector vari-
able x and L-dimensional vector parameter p available for
an external adjustment. Assume that an n-dimensional
vector variable y(¢) = g(x(z)) [a function of dynamical
variables x(7)] represents the system output. Suppose that
at p = p, the system has an unstable fixed point x* that
satisfies f(x*, pg) = 0. The location of the fixed point x*
is unknown. To stabilize the fixed point, we perturb the
parameters by an adaptive feedback

p(t) = po + kB[Aw(1) + Cy(1)], 3)

where w is an M-dimensional dynamical variable of the
controller that satisfies

w(t) = Aw + Cy. 4)

Here A, B, and C are the matrices of dimensions M X M,
M X L, and n X M, respectively, and k is a scalar pa-
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FIG. 1. Stabilizing an unstable fixed point with an unstable

controller in a simple model of Eqgs. (1) for A* =1 and A° =
0.1. (a) Root loci of the characteristic equation as k varies from
0 to o0, The crosses and solid dot denote the location of roots at
k =0 and k — oo, respectively. (b) ReA vs k. ky = A* + A°,
kip =A%+ A°F 24/252°.
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rameter that defines the feedback gain. The feedback is
constructed in such a way that it does not change the
steady state solutions of the free system. For any k, the
fixed point of the closed loop system in the whole phase
space of variables {x, w} is {x*, w*}, where x* is the fixed
point of the free system and w* is the corresponding
steady state value of the controller variable. The latter
satisfies a system of linear equations Aw* = —Cg(x*)
that has a unique solution for any nonsingular matrix A.
The feedback perturbation kBw vanishes whenever the
fixed point of the closed loop system is stabilized.
Small deviations x = x — x* and 6w = w — w* from
the fixed point are described by variational equations

ox = Jbx + kPBow, ow = CGéx + Adw, (5

where J = D, f(x*, po), P =D,f(x* py), and G =
D,g(x*). Here D, and D, denote the vector derivatives
(Jacobian matrices) with respect to the variables x and
parameters p, respectively. The characteristic equation
for the closed loop system reads:
IN—J —kAPB

AV=1"cg m-a |70 ©
For k = 0 we have Ay(A) = |[IA — J||IX — A| and Eq. (6)
splits into two independent equations |[IA — J| = 0 and
[IA — A| = 0 that define N eigenvalues of the free system
A= /\j j=1,..., N and M eigenvalues of the free con-
troller A =AY, j=1,..., M, respectively. By assump-
tion, at least one eigenvalue of the free system is in the
right half-plane. The closed loop system is stabilized in
an interval of the control gain k for which all eigenvalues
of Eq. (6) are in the left half-plane ReA < 0.

The following theorem defines an important topologi-
cal limitation of the above adaptive controller. It is simi-
lar to the Nakajima theorem [4] concerning the limitation
of the time-delayed feedback controller.

Theorem.—Consider a fixed point x* of a dynamical
system (2) characterized by Jacobian matrix J and an
adaptive controller (4) with a nonsingular matrix A. If the
total number of real positive eigenvalues of the matrices J
and A is odd, then the closed loop system described by
Egs. (2)—(4) cannot be stabilized by any choice of ma-
trices A, B, C, and control gain k.

Proof.—The stability of the closed loop system is de-
termined by the roots of A, (). Writing Eq. (6) for k = 0
in the basis where matrices J and A are diagonal, we have

N M
A =A== A5, (7)
j=1 m=1

Here A} and A, are the eigenvalues of the matrices J and
A, respectively. Now from Eq. (6), we also have A;(0) =
Ay(0), so Eq. (7) implies

N M
AO) =TT T2 (8)
j=1 m=1

for all k. Since the total number of eigenvalues A} and A;,
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that are real and positive is odd and other eigenvalues are
real and negative or come in complex conjugate pairs,
A;(0) must be real and negative. On the other hand, from
the definition of A.(A), we see immediately that when
A — oo then Ay (A) = ANT™ > for all k. Ay(A) is an
N + M order polynomial with real coefficients and is
continuous for all A. Since A(A) is negative for A = 0
and is positive for large A, it follows that Az(A) = O for
some real positive A. Thus, the closed loop system always
has at least one real positive eigenvalue and cannot be
stabilized, Q.E.D. [9].

From this theorem it follows that any fixed point x*
with an odd number of real positive eigenvalues cannot be
stabilized with a stable controller. In other words, if the
Jacobian J of a fixed point has an odd number of real
positive eigenvalues, then it can be stabilized only with
an unstable controller whose matrix A has an odd number
(at least one) of real positive eigenvalues.

Controlling an electrochemical oscillator—The use of
an unstable degree of freedom in a feedback loop is now
demonstrated with control in an electrodissolution pro-
cess, the dissolution of nickel in sulfuric acid. The main
features of this process can be qualitatively described
with a model proposed by Haim et al [10]. The dimen-
sionless model together with the controller reads:

L C, exp(0.5¢)
e=i—(1 @)[71 TG, oxp(©) + anp(e)} (9a)
- exp(0.5¢)(1 — @) bCjexp(2e)®

re = 1+ C,exp(e) C,c + exp(e)’ ©b)
w = A(w — i). (9¢)

Here e is the dimensionless potential of the electrode and
O is the surface coverage of NiO + NiOH. An observable
is the current

i=(Vy,+ 06V —e)/R, SV =1k(i —w), (10)

where V, is the circuit potential and R is the series
resistance of the cell. 6V is the feedback perturbation
applied to the circuit potential, k is the feedback gain.
From Egs. (10) it follows that i = (V, — e — kw)/(R — k)
and 8V = k(V, — e — wR)/(R — k). We see that the feed-
back perturbation is singular at k = R.

In a certain interval of the circuit potential V,, a free
(6V = 0) system has three coexisting fixed points: a
stable node, a saddle, and an unstable focus [Fig. 2(a)].
Depending on the initial conditions, the trajectories are
attracted either to the stable node or to the stable limit
cycle that surrounds an unstable focus. As is seen from
Figs. 2(b) and 2(c), the coexisting saddle and the unstable
focus can be stabilized with the unstable (A° > 0) and
stable (A€ < 0) controller, respectively, if the control gain
is in the interval ky < k < R = 50. Figure 2(d) shows the
stability domains of these points in the (k, V,) plane. If
the value of the control gain is chosen close to k = R,
the fixed points remain stable for all values of the poten-
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FIG. 2. Results of analysis of the electrochemical model for
R=150, C,=1600, a =03, b=6X107, ¢ =103, ' =
0.01. (a) Steady solutions e* vs V of the free (§V = 0) system.
Solid, broken, and dotted curves correspond to a stable node, a
saddle, and an unstable focus, respectively. (b),(c) Eigenvalues
of the closed loop system as functions of control gain k at V, =
63.888 for the saddle (e*, ®*) = (0, 0.0166) controlled by an
unstable controller (A = 0.01) and for the unstable focus
(e*, ®*) = (—1.7074, 0.4521) controlled by a stable controller
(A¢ = —0.01), respectively. (d) Stability domain in (k, V)
plane for the saddle (crossed lines) at A° = 0.01 and for the
focus (inclined lines) at A€ = —0.01.

tial V. This enables a tracking of the fixed points by
fixing the control gain k and varying the potential V{,. In
general, a tracking algorithm requires a continuous up-
dating of the target state and the control gain. Our new
method finds the position of the steady states automati-
cally. The method is robust enough in the examples in-
vestigated to operate without a change in control gain. We
also note that the stability of the saddle and focus points
can be switched by a simple reversal of sign of the
parameter A°.

Laboratory experiments have been carried out with
nickel dissolution to verify the applicability of the pro-
posed controller. A standard electrochemical cell consist-
ing of a nickel working electrode (1 mm diameter), a
Hg/Hg,S0,/K,S0, reference electrode, and a Pt mesh
counterelectrode was used. The current of the electrode is
measured with a zero resistance ammeter, and the poten-
tial of the electrode [determined by Egs. (9¢) and (10)] is
controlled with a Keithley Adwin Pro online controller
system connected to the potentiostat. The data acquisition
and control frequency was 200 Hz, larger than the inher-
ent frequency of the oscillations (< 1 Hz).

The experimental parameters (concentration of sul-
furic acid: 4.5 M, added external resistance 602 (), cir-
cuit potential V) have been optimized to show similar
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FIG. 3. Experiments. (a),(b) Controlling the unstable focus
(region C1, A = —0.1 s™!) and the saddle point (region C2,
A¢ =0.1 s7!) by changing the sign of A¢. k =800 Q, V, =
1.220 V. (c)-(j) Phase portraits of different steady states
(circle: high current unstable state, square: low-current stable
state, triangle: saddle) and the limit cycles (solid lines) at
different potentials Vj: (c) 1.200, (d) 1.210, (e) 1.220,
(f) 1.260, (g) 1.270, (h) 1.380, (i) 1.400, and (j) 1.410 V. SN:
saddle node bifurcation. SL: saddle-loop bifurcation.

dynamics to those of the simulations. At V, = 1.240 V
periodic oscillations and a low-current, stable steady state
are seen. (At a higher potential, about V; = 1.270 V, the
oscillations disappear with finite amplitude and infinite
period characteristic of a saddle-loop bifurcation.) In this
parameter region the model predicts the existence of two
additional unstable steady states: a high current unstable
focus inside the limit cycle and a saddle point between the
lower stable and the unstable higher one.

The stabilization of these latter two steady states can be
achieved by implementing the control formula Egs. (9¢c)
and (10). The successful control is shown in Figs. 3(a) and
3(b) by keeping the feedback gain k = 800 ) and simply
switching A¢ from —0.1 s™! to 0.1 s~!. The stable con-
troller (region Cl) stabilizes the higher current steady
state with a vanishing control signal after a short tran-
sition period. The saddle point can be stabilized (region
C2) with the unstable controller. The robustness of the
control algorithm enabled us to stabilize unstable steady
states in the whole parameter region of interest. By map-
ping the stable and unstable phase objects, we managed to
visualize bifurcations from experimental data. In
Figs. 3(c)-3(j) the stable steady states and limit cycles
are shown with the stabilized unstable states. At lower
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potentials [Fig. 3(c)] there is only a stable limit cycle and
an unstable focus. As the potential is increased [Fig. 3(d)]
a new steady state occurs in the low-current region via a
saddle-node bifurcation. At a somewhat larger potential
[Fig. 3(e)] the resolution of a distinct saddle point and a
stable node becomes possible. With further increase in
the potential [Fig. 3(f)] the saddle point approaches the
limit cycle; the limit cycle disappears with the collision
of the saddle point [Fig. 3(g)], resulting in a saddle-loop
(homoclinic) bifurcation. At larger potentials the saddle
approaches the upper steady state and disappears through
another saddle-node bifurcation. At large potentials
[Fig. 3(j)] only one stable steady state exists.

In conclusion, we have proposed an adaptive controller
for stabilizing and tracking unknown steady states of
dynamical systems and demonstrated its efficiency with
the chemical experiment. The controller is described by a
finite set of ODEs and is simpler than a time-delayed
feedback controller. We have shown that the adaptive sta-
bilization of saddle-type steady states requires the pres-
ence of an unstable degree of freedom in a feedback loop.
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