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Dephasing of Atomic Tunneling by Nuclear Quadrupoles
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Recent experiments revealed a most surprising magnetic-field dependence of coherent echoes in
amorphous solids. We show that a novel dephasing mechanism involving nuclear quadrupole moments
is the origin of the observed phenomena.

DOI: 10.1103/PhysRevLett.89.237601 PACS numbers: 77.22.Ch, 61.43.Fs, 64.90.+b
FIG. 1. Two-level system with energy splitting E, eigenfunc-

experiment, the first pulse creates a coherent superposi-
tion of the ground state and the excited state, with a

tions  0 and  1, and the corresponding quadrupole quantiza-
tion axes u0 and u1.
Until recently, it was the general belief that the dielec-
tric properties of insulating glasses—free of magnetic
impurities—are largely independent of external mag-
netic fields. New investigations, however, revealed a
strong variation at very low temperatures (T < 100 mK)
for certain multicomponent glasses [1–7]. In particular,
the low-frequency dielectric susceptibility and the ampli-
tude of spontaneous polarization echoes generated in
these amorphous materials show a striking nonmonotonic
dependence on applied magnetic field.

Since the low-temperature properties of glasses are
governed by atomic tunneling systems (for recent re-
views, see [8,9]), it has been speculated whether and
how a magnetic field can couple to quantum tunneling.
Two models have been proposed that relate the magnetic-
field dependence to the Ahanorov-Bohm phase of a
charged particle moving along a closed loop [10,11].
Very recent polarization echo experiments, however, in-
dicate that such a periodic variation of the tunnel splitting
is not the origin of the observed magnetic-field effects
[6,7]. In contrast, these experiments strongly suggest that
nuclear magnetic moments play a crucial role in the
observed anomalies.

In this Letter, we discuss how nuclear magnetic and
quadrupolar moments influence atomic tunnel states.
After a brief reminder of two-pulse echoes of two-level
systems and the nuclear spin Hamiltonian, we give the
echo-amplitude correction factor due to nuclear spins and
evaluate this expression for the limiting cases of weak
and strong magnetic fields. Finally, we compare our
theory with recent data for several glasses.

Two-level systems (TLS) in glasses arise from double-
well potentials with asymmetry � and tunnel matrix
element �0,

H � �1
2�0�x �

1
2��z; (1)

where �z � �1 is the reduced two-state variable that
indicates the states localized in the two wells [8,9]. The
eigenstates  0 and  1 are separated by the energy split-

ting E �
������������������
�20 � �2

q
(see Fig. 1.) In a two-pulse echo
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relative phase factor e�iEt= �h. Because of the dispersion
of the two-level splitting E, the corresponding macro-
scopic polarization decays rapidly. After a waiting time
tw, the second pulse exchanges the amplitudes of these
two states; the resulting phase factor e�iE�t�tw�= �h leads to a
revival of the coherent polarization, and the ‘‘echo’’ is
observed at a time t � tw after the second pulse,

P0�t; tw� �
X
i

Ai cos�!i�t� tw�	; (2)

where the sum runs over all TLS with tunnel frequency
!i � Ei= �h and effective dipole moment Ai.

Such a tunnel system involves several atoms, each of
which may carry a nuclear magnetic dipole and an elec-
tric quadrupole. For the sake of simplicity, we consider a
single atom whose nucleus is in a state of total angular
momentum I, where I2 � �h2I�I � 1�. This ‘‘nuclear
spin’’ results in a magnetic moment g�NI= �h, with the
Landé factor g and the nuclear magneton �N �
5
 10�27 J=T. In the case I � 1, the orbital motion of
the protons is related to an electric quadrupole moment
[12]; for a nuclear charge distribution ��r� oriented along
the axis e, one finds

Q �
Z
d3r�3�r�e�2 � r2	��r�: (3)
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The magnetic dipole couples to the external field B �
Bez and the quadrupole moment to the electric-field
gradient (EFG) that is given by the curvature of the
crystal field potential ��r�. We consider the simplest
case of a single diagonal term �00 � �u�r�2� along the
axis u. Then the spin Hamiltonian reads as [12]

V � g�NBÎIz �
�00Q
4

3ÎI2u � I�I � 1�

I�2I � 1�
; (4)

with the projections of the nuclear spin operator on the
axes defined by the EFG, ÎIu � �u�I�= �h, and the magnetic
field, ÎIz � Iz= �h.

For zero magnetic field, u is the appropriate quantiza-
tion axis; with ÎI2u � m2 and m � �I; . . . ; I, the
Hamiltonian is diagonal. (I � 1 and I � 3=2 give rise
to a doublet, I � 2 and I � 5=2 to a triplet, etc.) In the
opposite case of zero EFG, the usual choice ÎIz � m gives
the �2I � 1� Zeeman levels mg�NB. In general, the axes
defined by the magnetic field, ez, and the EFG, u, are not
parallel; i.e., the operators ÎIu and ÎIz cannot be diagonal-
ized simultaneously, thus resulting in a more complicated
situation if both the magnetic field and the EFG are finite.

For asymmetric TLS, one of the eigenstates, say, the
ground state  0, has a large probability amplitude in the
right well, whereas the excited one,  1, has a larger
amplitude in the left well (see Fig. 1.) In an amorphous
or disordered solid, the crystal field, and thus the quadru-
pole quantization axis, are not the same in the two wells.
In terms of the nuclear spin Hamiltonian, this means that
both the absolute value of the EFG and the quantization
axis depend on the two-state variable. These quantities
are denoted �00

0 and u0 in the ground state and �00
1 and u1

in the excited level.
Now we discuss how nuclear spins affect the polar-

ization echo that arises from a coherent superposition of
the two tunnel states. In general, the quadrupolar part of
237601-2
the nuclear spin Hamiltonian does not commute with H.
Thus, V leads to a dispersion of the two-level splitting
when switching from u0 to u1 during the two pulses and,
thus, to a dephasing of the echo signal.

The density operator of a TLS involves four indepen-
dent operators, e.g., the three Pauli matrices �x, �y, �z,
and unity. Accordingly, the propagator is represented by a
four-dimensional matrix [13]. Taking into account a nu-
clear spin I renders the dynamics significantly more
complex, since we have to deal withD � 2�2I � 1� quan-
tum states corresponding to a density matrix with D2

entries. It can be shown that a nuclear spin results in an
overall factor of the echo amplitude [14],

P�t; tw� � P0�t; tw�f�t; tw�; (5)

where f�t; tw� is determined by the nuclear spin energies
and eigenfunctions in the upper and lower tunnel states,

f�t; tw� � �ze�iLtR��"2�e�iLtw= �hR��"1� : (6)

The bar indicates the ensemble average; time evolution
for zero driving field is written in terms of the Liouville
operator L
 � �1= �h��V; 
	, and the rotations R account
for the two electric-field pulses of duration "i and Rabi
frequency �. Both L and R are superoperators that act
on nuclear spin variables. The argument of R�#� is the
‘‘pulse area’’ #.

The first external-field pulse creates a coherent super-
position of the two tunnel states, whereas the second pulse
exchanges their phases. (In the Bloch spin picture, this is
related to rotations of the ‘‘polarization vector’’ h ~��i.) The
full density matrix is expressed through standard basis
operators jui%ihuj'j, with i; j � 0; 1 and %;' � �I;
. . . ; I. In the composite space of TLS and nuclear spin
variables, L and R are represented by tetrads Lpqrs and
Rpqrs of dimension D4. Spelling out the matrices R and
�z and taking the trace, we obtain the correction
factor
f�t; tw� �
X
%'-.

f%'-. cos��"0% � "1'�t= �h� �"0- � "1.�tw= �h	; (7)
where nuclear spin energy levels (i.e., the eigenvalues of
V) are denoted by "0% and "1% and f%'-. depends on the
matrix elements of R and �z. (Details will be given
elsewhere [14].) Here we resort to a simple approximation
that is justified in various situations, such as short pulses
or almost parallel quadrupolar quantization axes, and that
is expected to grasp the essential physics in any case.
Since the polarization echo occurs on a time scale much
shorter than the waiting time, we may put t � tw. For a
TLS initially in the ground state, we find the phase factor

f�tw� �
1

2I � 1

X
%;';.

j0%'j
2j0%.j

2 cos�!'.tw�; (8)

that depends on the overlaps
0%' � hu0% j u1'i (9)

and the quadrupole spectrum

!'. � �"1. � "1'�= �h: (10)

For the case where the system is initially in the excited
state, we find a similar expression with "0- instead of "1-.
Thus, f�tw� describes the reduction of the whole echo
signal.

In the remainder of this Letter, we discuss the reduction
factor (8). First we consider the situation where the qua-
drupole coupling is ineffective, such as a zero EFG,
parallel quantization axes u0 � u1, or a very strong mag-
netic field. Then the nuclear spin states corresponding to
237601-2
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FIG. 2. Magnetic-field dependence of the echo amplitude of
BK7 [15]. The solid lines are calculated as explained in the text.
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the tunnel levels are identical, ju0%i � ju1%i, for
% � �I; . . . ; I and 0%' � .%', resulting in f�tw� � 1.

In general, however, the EFG is finite and the qua-
drupolar Hamiltonian is not the same for the two levels,
resulting in a nondiagonal overlap matrix, 0%'. The
quadrupolar energy scale reads as

�h!Q �
3

4I�2I � 1�
�00Q: (11)

Typical values for the quadrupolar energy �00Q corre-
spond to frequencies of the order of tens of MHz and thus
satisfy, for waiting times tw �� sec, the inequality
!Qtw � 21 that simplifies significantly the analysis. As
a consequence, all terms involving different quadrupole
levels . � �' in (8) vanish. Yet note that the quadrupolar
spectrum exhibits a degeneracy with respect to '! �'
which, in turn, is lifted by a magnetic field.

In the limit of zero waiting time, the cosines in (8) are
equal to unity, and we have f�tw ! 0� � 1. In the oppo-
site case of very long times and all degeneracies lifted,
the terms with finite frequency !.' vanish, resulting in

f�tw ! 1� �
1

2I � 1

X
%;'

j0%'j
4 � 1� a: (12)

We are interested in the intermediate regime of experi-
mentally relevant waiting times that are of the order of
� sec. Thus, we have to look for frequencies in the MHz
range that satisfy the condition !.'tw � 1.

Both the overlaps 0%' and the frequencies !-' depend
in an intricate manner on the relevant orientation of the
three vectors ez, u0, u1 and on the ratio of the Zeeman
splitting and the quadrupolar energy. Here we discuss a
few limiting cases where (8) simplifies significantly. The
argument is developed for half-integer spin I � 3

2 ;
5
2 ; . . .

but is easily generalized to integer I.
First we consider the case of a weak magnetic field,

where

�h!Z � g�NB (13)

is small as compared to �h!Q. Then the nuclear Zeeman
splitting �h!Z lifts the degeneracy of the doublets �' of
the quadrupolar energy (' � 1

2 ; . . . ; I). Discarding rap-
idly oscillating terms � cos�!Qtw� and separating the
weight factor

b' � 2
X
%

j0%'j
2j0%;�'j

2

and the time-dependent term, we obtain

f�tw� � 1� a�
X
'

b'cos�!';�'tw�: (14)

For small B we may neglect the magnetic-field depen-
dence of the weight factors and treat the Zeeman term as a
perturbation. Starting from the eigenbasis of the qua-
drupolar energy, we thus diagonalize the Zeeman term
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of V in each degenerate subspace �'. The splitting of
each doublet �' depends on the relative orientation of the
quantization axes ez and u1 through the cosine x � ez �
u1. For ' � 3

2 ; . . . ; I, the splitting is given by the projec-
tion of the magnetic field on the quadrupolar axis,

!';�' � x2'!Z �' > 1=2�; (15)

whereas for ' � 1
2 , it reads as

!1=2;��1=2� �

��������������������������������������������������
x2 � �I � 1=2�2�1� x2�

q
!Z: (16)

The average in (14) is given by

�� � �� �
Z 1

0
dxp�x��� � ��: (17)

Though possible in principle, calculation of the nor-
malized distribution p�x� is beyond the scope of the
present Letter. Equation (14) shows oscillatory behavior
with period �!Ztw, independent of the precise form of
p�x�. For I � 3

2 there are two components; using p�x� � 1,
their minima occur at !Ztw � 0:61 (' � 1

2 ) and !Ztw �
0:51 (' � 3

2 ); regarding Al (I � 5
2 ) there are three

features with minima at !Ztw � 0:41, 0:51, 0:31 (see
Table I.) For the fit of the experimental data in Fig. 2,
the best results are obtained with p�x� � 3x2 and
b1=2 � 2b3=2.

Now we turn to strong magnetic fields, !Z � !Q,
where the quadrupole energy may be treated as a pertur-
bation with respect to the Zeeman splitting. When calcu-
lating the overlap matrix 0%' to lowest order in
!Q=!Z and observing the normalization conditionP
' j0%'j

2 � 1, we obtain

1� f�tw� � 2
X

%;'�%

j0%'j2 �
�
�h!Q
g�NB

�
2
: (18)
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TABLE I. Nuclear spin parameters g and I. Experimental
values for the first minimum of the echo amplitude. Calculated
values for ' � 1=2; . . . ; I, as explained in the text. The natural
abundance of 135=137Ba is 17%.

(Meas.) (Calc.)
I g Bmintw (10�9 Ts)

Borosilicate 11B 3=2 1.8 22 21=18
KBr:CN 79;81Br 3=2 1.5 30 25=21

Al-Ba-silicate
27Al 5=2 1.44

28
18=22=13

135=137Ba 3=2 0.6 63=52
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Thus, we find a variation f�tw� � 1� const
 B�2 at high
magnetic fields, as shown in Fig. 2.

These theoretical findings (14)–(18) agree rather well
with available data. We briefly discuss the most salient
features.

(i) Both the oscillatory behavior of the echo amplitude
with small B and the saturation at higher fields have been
observed for several multicomponent glasses and mixed
crystals [6,7]. In Fig. 2 we plot the echo amplitude mea-
sured for the borosilicate glass BK7 as a function of the
magnetic field. At small B the data show a few oscilla-
tions; at higher fields the amplitude increases strongly and
would seem to saturate. The solid line for B< 100 mT is
calculated from Eq. (14) that, with tw � 2� sec, g � 1:8,
and I � 3

2 , describes the first minimum unambiguously.
The increase at B > 100 mT has been fitted with (18).

(ii) The particular waiting time dependence of the
echo amplitude through the product Btw has been verified
experimentally in great detail, especially for KBr:CN [7].
In Table I we give the nuclear spin parameters I and g and
the measured and calculated positions of the first mini-
mum in terms of the quantity Bmintw.

(iii) All systems showing the magnetic-field depen-
dence contain nuclei with I � 1 and finite quadrupole
moments (B in BK7; Br and N in KBr:CN; Al in Ba-Al-
silicate). On the other hand, the only glass that shows no
magnetic-field dependence (amorphous silicon oxide)
[15] does not contain nuclear quadrupoles, since I � 1

2
for 29Si and I � 0 for 16O and 28Si.

These findings provide very strong evidence that the
observed magnetic-field dependence arises from the dy-
namic phase of the nuclear Zeeman splitting of quadru-
polar levels. (Preliminary experiments on other systems
would seem to confirm this statement [15].) The simpli-
fications of the present theory may be at the origin of the
discrepancies in Fig. 2. For example, real tunnel systems
certainly involve more than one nuclear spin. This is
obvious for glasses. In mixed crystals, the tunneling
atom drags its dressing cloud; that is why bromine ap-
pears in Table I. The present theory shows no temperature
237601-4
dependence, since the time evolution in (6) is purely
coherent and does not account for relaxation.

It seems likely at this point that the quadrupole split-
ting of tunneling levels not only influences the amplitude
of polarization echoes, but has also consequences for
other properties of glasses at very low temperatures. In
particular, we expect that the magnetic-field dependence
of the dielectric susceptibility observed in several glasses
is also caused by nuclear spins.

In summary, we have proposed an explanation for the
recently observed magnetic-field dependence of polariza-
tion echoes in terms of a novel dephasing mechanism
involving nuclear spins and quadrupole moments. The
EFG �00 and the corresponding axes u are not the same
in the two minima of the atomic double-well potential;
the quadrupolar energies give rise to phase dispersion that
reduces the echo signal. The oscillations at small fields
result from the interference of the dynamical quantum
phases of almost degenerate quadrupole levels. The strong
increase of the echo amplitude at larger B is due to the
alignment of the nuclear magnetic moments with respect
to the magnetic field. For strong fields, �NB� �h!Q, we
expect saturation at the value f � 1.
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