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Free Energy and Torque for Superconductors with Different Anisotropies of Hc2 and �
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The free energy is evaluated for a uniaxial superconductor with the anisotropy of the upper critical
field, �H � Hc2;a=Hc2;c, different from the anisotropy of the penetration depth �� � �c=�a. With
increasing difference between �H and ��, the equilibrium orientation of the crystal relative to the
applied field may shift from � � 	=2 (� is the angle between the field and the c axis) to lower angles
and reach � � 0 for large enough �H . These effects are expected to take place in MgB2.
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where � is the angle between the induction B and the
crystal axis c, here mzz �ma sin

2��mc cos
2�, mc=ma � �2 , m2

amc � 1
It is a common practice to characterize anisotropic
superconductors by a single anisotropy parameter defined
as � � 
a=
c � �c=�a (
 is the coherence length, � is the
penetration depth, and a; c are principal directions of a
uniaxial crystal of the interest here). The practice
emerged after the anisotropic Ginzburg-Landau (GL)
equations were derived for arbitrary gap and Fermi sur-
face anisotropies by Gor’kov and Melik-Barkhudarov [1].
Formally, this came out because in the GL domain, the
same ‘‘mass tensor’’ determines the anisotropy of both 

(of the upper critical fields Hc2) and �.

At arbitrary temperatures, however, the theoretical
approach for calculating Hc2 (the position of the second
order phase transition in high fields) has little in common
with evaluation of � (the weak-field relation between the
current and the vector potential), so that the anisotropies
of these quantities are not necessarily the same. In fact,
in materials with anisotropic Fermi surfaces and aniso-
tropic gaps, not only the parameter �H � Hc2;a=Hc2;c
may strongly depend on T, but this ratio might differ
considerably from �� � �c=�a at low T’s. For MgB2,
�H � 6 at low temperatures [2–5]. There is no consensus
yet on the low-T ��. Zehetmayer et al. use the torque data
to find �� � �H; however, their procedure implies this
equality to begin with (as discussed in detail below).
Microscopic calculation for clean MgB2 yields �� � 1:1
[6,7]. With increasing T, �H�T� decreases, the calculated
���T� increases till they meet at T � Tc: �H�Tc� �
���Tc� � 2:6 .

One of the most sensitive methods used to extract the
anisotropy parameter � is to measure the torque acting on
a superconducting crystal in the mixed state with the
applied field tilted relative to the crystal axes. In inter-
mediate field domain, Hc1 � H � Hc2, the demagnet-
ization shape effects are weak, and the torque density can
be evaluated [8,9]:

 �
�0B��2 � 1� sin2�

64	2�2�1=3"���
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�Hc2;a

B"���
; (1)
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sin2�� �2 cos2�

q
; (2)

�3 � �2
a�c, and �	 1. This formula can be written as

� � M
H; since in this field domain the magnetization
M � H, one can disregard the distinction between B and
H. It has been assumed in the derivation of Eq. (1) that the
anisotropies of Hc2 and of the London penetration depth
are the same: �H � �� � �.

Note that Eq. (1) describes the system with the stable
equilibrium at � � 	=2; i.e., the uniaxial crystal in the
external field positions itself so that the field is parallel to
ab (if � > 1). It is worth noting that if one applies
formally the expression (1) with Hc2��� � Hc2;a="���
having the anisotropy different from ��, one may obtain
qualitatively different angular behavior of ���.

Expression (1) for the torque has been derived within
the London approach by employing the cutoff at distances
on the order of the coherence length 
 where this approach
fails; that is how the upper critical field Hc2 	�0=
2

enters the London formula. The formula, however, has
been confirmed experimentally (for a few high-Tc mate-
rials) with a good accuracy as far as the angular depen-
dencies of quantities involved are concerned [10].
Uncertainties of the London approach are incorporated
in the parameter �	 1; discussion of those can be found,
e.g., in Ref. [11].

Below, the free energy of the mixed state and the torque
are derived for the general case of �H � ��. The torque
expression is shown to acquire new terms which describe
a more complicated behavior as compared to that of
Eq. (1). This implies that the analysis of the torque data
might be misleading if Eq. (1) is employed to materials
like MgB2 [5,12,13].

Let us start with the London expression for the free
energy valid for intermediate fields Hc1 � H � Hc2
along z tilted with respect to the c crystal axis over the
angle � toward the crystal direction a [14]:

F �
B2
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�
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for uniaxial crystals, and G form the reciprocal vortex
lattice. The summation is extended over all nonzero G.

As usual we evaluate the sum here by replacing it
with an integral over the reciprocal plane,

P
G !

��0=4	2B�
R
dGxdGy :

~FF � F�
B2

8	
�

�0Bmzz

32	3�2ma
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32	3�2

Z 2	
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where gx �
��������
mzz

p
Gx , gy �

������
mc

p
Gy , and we use polar

coordinates gx � g sin’; gy � g cos’.
To determine the limits of integration over g, one can

recall that in fields B � Hc2 the vortex lattice structure is
fixed by the anisotropy parameter �� [14]. In intermedi-
ate fields, for all possible equilibrium London structures,
the distance g0 in the reciprocal space from the origin to
the nearest neighbors is given by [15]

g20 � mzzG2
x �mcG2

y �
8	2B���
3

p
�0
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mcmzz

p
: (5)

Therefore, one can take g0 (multiplied by a number of
order unity) as the lower limit in the logarithmically
divergent integral over g.

The upper limit in this integral is affected by the form
of the vortex core. To determine the core shape we note
that the microscopic evaluation of Hc2 (see Ref. [7]) shows
that with a good accuracy the angular dependence of Hc2
is given by the standard GL form at any T:
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This can be written as
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where 
x;y are semiaxes of the elliptical core. We stress
that the ‘‘masses’’ �ik are different from mik which de-
termine the anisotropy of �; in particular, �a � ��2=3

H ,
�c � �4=3

H , whereas ma � ��2=3
� , mc � �4=3

� . Equation (7)
gives maximum values of Gx and Gy:
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Thus, the domain of integration in the G plane is bound by
an ellipse
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In other words, at a given ’, the upper limit in the integral
over g is
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and we obtain
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Note that ! � 1 for coinciding anisotropies of Hc2 and
�; the integral J�!� over ’ then vanishes, and we have the
standard expression for the energy. To evaluate J�!�, we
observe that the integral for dJ=d! can be calculated by
going to the complex plane with the help of residues:
dJ=d! � 4	=�!� 1�. Since J�1� � 0, we obtain

J � 4	 ln
1� !
2

: (12)

Thus, we have
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To write explicitly the angular dependence of F, it is
convenient to use the angular functions

��;H��� � "�;H���=��;H; (14)

where "�;H��� are defined in Eq. (2) with corresponding
�’s. In terms of these functions, ! � �H=�� and
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The torque density follows:
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where e� 2:718 . . . . The torque is zero at �� 0;	=2
because

�0 ��
��2� 1� sin2�

2�2�
(17)

for both �� and �H. In the standard case of �H � �� � �,
Eq. (16) reduces to the result (1) if we set ��	

���
3

p
=e�

2 . We then can rewrite the torque in the form
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Since �0
�;H < 0, the second contribution to the torque

(16) is negative, whereas the first one is positive. The
positive torque implies that the system energy decreases
with increasing �, as in the case of �H � �� for which
� � 	=2 is the stable equilibrium.

The competing roles of these two contributions can be
demonstrated by considering stability of equilibrium
states at � � 0 and � � 	=2. To do this one notes that
��0� � 1, ��	=2� � 1=�, �0�0� � �0�	=2� � 0, and

�00�0� � �
�2 � 1

�
; �00�	=2� �

�2 � 1

�
(19)

(for both �� and �H). Then, one obtains
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where the constant positive prefactor is omitted since we
are interested only in the sign of F00. Clearly, � � 	=2
corresponds to the stable equilibrium for �H � ��. In the
general case, however, there is no such a clear-cut result:
for a fixed �� and large enough �H, � � 	=2 may become
unstable. For example, for �� � 1 and �H > 1,
F00�	=2�< 0, whereas F00�0� > 0 .

To illustrate how the angular dependence of the torque
varies with anisotropies of Hc2 and �, we evaluate nu-
merically the torque density (18) for parameters in the
range of those for MgB2. Figure 1 shows ��� for �� � 2:2
and �H � 3, the values expected for temperatures some-
what below Tc. Qualitatively, the dependence is standard;
the torque is positive in the whole angular domain; i.e.,
� � 	=2 is the stable equilibrium.

With decreasing T, �H of MgB2 increases, whereas ��
decreases. In Fig. 2 the torque (18) is plotted for �� � 2,
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FIG. 1. The torque  in units of �0B=32	
2�2

ab versus angle
0< �<	=2 for �� � 2:2, �H � 3, and 4e2�Hc2;c=B � 100.
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�H � 5 (the upper curve) and for �� � 1:7, �H � 5:3
(the lower curve). These values correspond roughly to
0:7Tc and 0:6Tc according to Ref. [7]. Clearly, � � 	=2
as well as � � 0 are unstable; the stable equilibrium is
shifted to 0< �<	=2. Interestingly enough, Ref. [16]
reports that a strong ‘‘peak-effect-like’’ irreversibility
develops in the torque data at � 77� at T � 15 K and
H � 7:5 T. In layered materials this effect is commonly
interpreted as manifestation of the ‘‘intrinsic pinning’’ in
the small vicinity of the equilibrium orientation at � �
	=2. From the point of view of this Letter, the peak
should move to a position of the stable equilibrium, i.e.,
to lower angles. Moreover, the data show a negative torque
above this angle (77� < �< 90�) in agreement with
Fig. 2. Still, interpretation of these data within the
London model should not be taken too literally: the
applied field H � 7:5 T exceeds Hc2;c�0�, and in the �
domain where H <Hc2���, the London model should not
be trusted.

Finally, we plot in Fig. 3 the torque density for pa-
rameters which correspond to low temperatures, where
�� � 1:1 and �H � 6. The torque is negative for all
angles implying the stable equilibrium at � � 0.

Physically, the large low temperature anisotropy of Hc2
in MgB2 is caused by the large superconducting gap on
the nearly two-dimensional sheets of the Fermi surface of
this material [17–19]. With increasing T, thermal mixing
with the states at the three-dimensional part of the Fermi
surface suppresses this anisotropy to about �H�Tc� � 2:6.
The anisotropy of the London � (or of the superfluid
density) at T � 0 of clean materials does not depend on
the gap at all (‘‘Galilean invariance of the superflow’’)
and therefore is determined by the whole Fermi surface;
i.e., it is weak for MgB2 (see discussions in Refs. [6,7]).
The calculation [6] shows that ���T � 0� � 1:1 and
grows to � 2:6 as T ! Tc.
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FIG. 2. The same as in Fig. 1. The solid curve is calculated
with Eq. (18) for �� � 2 and �H � 5; the dashed curve
corresponds to �� � 1:7 and �H � 5:3 .
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FIG. 3. The same as in Fig. 1, but �� � 1:1 and �H � 6.
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Thus, different gaps at different Fermi surface pieces of
MgB2 (or, generally, anisotropic gaps on anisotropic
Fermi surfaces) may lead to profound macroscopic con-
sequences such as those considered above. Since �H de-
termines the anisotropy of the coherence length and,
therefore, of the vortex core, whereas �� describes the
ellipticity of the current distribution far from the core,
the symmetry of the intervortex interaction should de-
pend on the intervortex spacing, i.e., on the field B and its
direction. In MgB2 at low temperatures in fields along ab,
one expects to have the standard triangular (hexagonal)
vortex lattice in low fields (�� 	 1), which should evolve
to a distorted triangular (orthorhombic) lattice in increas-
ing fields when the core ellipticity (�H � 6) becomes
relevant for the vortex current distribution. The field
dependence of the vortex lattice structure should become
weaker at elevated temperatures and disappear near Tc.
Possibility of a peak effect near the field orientation other
than H k ab is an example of peculiar dynamic phenom-
ena which might be related to the shift in the minimum of
the energy angular dependence for certain values of �’s.
This possibility calls for further study.
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