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Reentrant Vortex Lattice Transformation in Fourfold Symmetric Superconductors
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The physics behind the rhombic ! square ! rhombic flux line lattice transformation in increasing
fields is clarified on the basis of Eilenberger theory. We demonstrate that this reentrance observed in
LuNi2B2C is due to intrinsic competition between the superconducting gap and Fermi surface
anisotropies. The calculations not only reproduce it but also predict the not yet found lock-in transition
to a square lattice with different orientation in a higher field. In view of the physical origin given, this
sequence of transitions is rather generic to occur in fourfold symmetric superconductors.
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FIG. 1. Rhombus and square FLL cell orientations relative to

of a stable square lattice in H vs T. the crystal. The vortex center is shown by 
. � > 0; � > 0.
The morphology of an equilibrium flux line lattice
(FLL) in type-II superconductors, its symmetry and ori-
entation relative to the crystallographic axes, is deter-
mined by microscopic electronic properties, particularly
by Fermi surface topology and superconducting pair
symmetry. In general, the shape and orientation of a
FLL cell will change with field direction trying to adjust
the electronic anisotropy of the underlying crystal [1].
In spite of a long research history which dates back to
the pioneering small angle neutron scattering experiment
by Cribier et al. [2] on Nb, problems associated with
FLL are still lively discussed even on seemingly the
simplest elemental metal Nb [3]. FLL symmetry trans-
formation under varying applied field is one of the topics
which attracted much of the attention of the vortex
physics community recently. The effect became known
in the early 1970s when the low field rhombic-to-square
FLL transition was observed first in PbTl [4]. Renewed
interest in this phenomenon came after similar transfor-
mations had been detected in a number of superconduc-
tors: RNi2B2C (R � Lu;Y;Er;Tm) [5–7], V3Si [8], and
high-Tc cuprate La1:83Sr0:17CuO4 [9]. All of them appear
to be fourfold symmetric crystals: cubic or tetragonal.

Recently, Eskildsen et al. [10] discovered a remarkable
reentrant transition of the rhombic FLL symmetry for
H k c in LuNi2B2C (Hc2; 0 � 9 T ). Upon increasing H,
the rhombic lattice changes into a square one and then
back again at a higher field. With increasing temperature
the rhombus-square boundary bends away and never
crosses the Hc2 line. Combining its result with other ex-
periments such as STM [6,11], muon spin rotation [12],
and Bitter decoration [13], the square FLL region is con-
fined in a small area just above Hc1 and up to �2–3 T on
the �H; T� plane. A high field square-to-rhombus transi-
tion is detected in TmNi2B2C [7] as well, though this is a
magnetic member of the borocarbide family. It is quite
interesting to remember the Nb case. The FLL in this
cubic system for H k �001� exhibits a square-to-rhombic
transition as T increases [14]. Although the definite phase
diagram is not established yet, the temperature depen-
dence of FLL symmetry alone suggests an isolated region
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It was realized early [15] that a certain fourfold an-
isotropy in-plane perpendicular to the applied field, such
as the Fermi velocity vF, can drive low field rhombus-to-
square transformation. In the in-plane anisotropy mod-
eled by vF�	� � vF�



8��1 � � cos4	� (	 polar angle), the

square FLL �v with nearest neighbors oriented along the
velocity minimum will be stabilized in low fields if
anisotropy degree � is large enough. The same is true
for the fourfold gap anisotropy alone j��r; 	�j2 �
j��r; 
8�j

2�1 	 � cos4	�, when square FLL �g (nearest
neighbors along gap minimum) tends to be stabilized.
These are schematically shown in Fig. 1. The nontrivial
questions are, Why is the square FLL unstable at high
fields and what does the actual phase diagram look like?
One idea is given by Gurevich and Kogan [16] who
consider it due to thermal fluctuation near Hc2. Here we
investigate two indispensable anisotropic effects on the
same footing. The interplay of gap and Fermi surface
anisotropy indeed can give rise to the reentrant FLL
transition and further square lock-in transition in a
higher field.

There is firm evidence in LuNi2B2C and YNi2B2C,
which we regard as essentially the same systems, to
show the existence of both anisotropies. As for the gap
anisotropy, various bulk measurements, including the
H-dependent linear specific heat coefficient ��H� (Volo-
vik effect) [17], the thermal conductivity [18], and angle-
integrated photoemission [19], all show a substantial gap
anisotropy. More recently the angle-resolved thermal
 2002 The American Physical Society 237004-1



H
/H

c2
(t

=
0.

5)

β

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

v

(a) (b)

α

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

g

vH
/H

c2
(t

=
0.

5)

FIG. 2. FLL phase diagram at T=Tc � 0:5. (a) � dependence
(� � 0); � shows where �v is stable. (b) � dependence (� �
0:3). Broken lines are a guide for the eye.
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conductivity [20] under H exhibits that the gap is vanish-
ingly smaller in (100) than in (110). This is consistent
with the spatial extension of the zero-bias peak observed
by STM [21]. As for the Fermi velocity anisotropy, when
interpreted through simple fourfold harmonic variation,
band calculation [22] told us that the Fermi velocity is
larger in (100) than in (110), or the angle-resolved density
of states (DOS) N�	� � 1=vF�	� is smaller along (100)
compared to (110). Note that the sense of the two anisot-
ropies mentioned is what we would naively expect be-
cause the larger gap ��	 � 0� should develop in larger
N�	 � 0�. The built-in tendency to stabilize two different
orientations �v and �g of square lattice ultimately leads
to the rich vortex phase diagram, including the reentrant
as we will see shortly.

Apart from the limiting cases [London model at H �
Hc2�T� and Ginzburg-Landau (GL) model at T � Tc],
there is no handy and convenient approximate scheme to
describe microscopic vortex properties deep in the �H; T�
plane. Therefore we resort to the quasiclassical Eilen-
berger equations [23] valid for kF�0  1 (kF: the Fermi
wave number; �0: the coherence length), a condition met
in most superconductors. The Eilenberger equations read
as ( �h � 1)

�2!� vF�	� ���f�!; r; 	� � 2��r; 	�g�!; r; 	�; (1)

�2!	 vF�	� ����fy�!; r; 	� � 2���r; 	�g�!; r; 	�: (2)

Here � � r� �2
i=�0�A is the gauge invariant gra-
dient, A is the vector potential, and �0 is the flux quan-
tum. ! � 
T�2n� 1� with integer n is Matsubara
frequency. The normalization condition for Green’s func-
tion g2 � ffy � 1. The pairing interaction is assumed
separable V�	; 	0� � V��	���	0� so that the gap function
is ��r; 	� � ��r���	�. We consider the two-dimensional
case with the cylindrical Fermi surface. Fourfold models
for Fermi velocity vF�	� � vF�1 � � cos4	�=

���������������
1 	 �2

p
and gap anisotropy ��	�2 � ��
8�

2�1 	 � cos4	� have
been adopted. Here 	 is the polar angle relative to the
(100) axis. Constant ��
8�

2 � 1=�1 � �1 	
���������������
1 	 �2

p
��=��

is chosen to assure the same Tc and DOS N0 for any value
of anisotropy parameters � and �. We are most interested
in the case when � and � are of the same sign. Then
positions of gap and velocity minima are 45� rotated to
each other (see Fig. 1) and we have a competing effect.
The self-consistent equations for the gap function ��r�
and the vector potential A are

��r� ln
Tc

T
� 2
T

X
!>0

�
��r�
!

	

�
��	�f
v�	�

��
; (3)

r� r�A � 	
16
3

�0
N0TvF

X
!>0

Imhgui: (4)

Here, v�	� � vF�	�=vF and u � �cos	; sin	� is the unit
vector along the Fermi velocity vF � vF�	�u. For average
over the Fermi surface, h. . .i � �1=2
�

R
. . . d	. The extra
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factor 1=v�	� in averages came from angle-resolved DOS
N�	� � N0=v�	� on the Fermi surface.

We have performed extensive numerical computations
by the so-called explosion method (see Ref. [24] for de-
tails) for various values of anisotropy parameters � and �
in a high GL parameter case � � 100. The self-consistent
solution yields a complete set of the physical quantities:
the spatial profiles of the order parameter ��r� and the
magnetic field H�r�, and the local density of states around
a vortex core. The free energy density is given by

F �
H2�r�
8


	 2
TN0

X
!>0

�	
1 	 g
1 � g



��	����f� �fy�

2v�	�

�
:

(5)

Here, a � �B=�0�
R

cell adr. Free energy should be mini-
mized with respect to the FLL symmetry and its orien-
tation relative to the crystallographic axes. Numerics is
backed up by analytical calculations. Namely, we also
solve these analytically at the two limiting cases: (i) near
Hc2�T� and (ii) H � Hc2�T� to gain physical insights. For
analytical results we considered the FLL cell shaped as a
rhombus with an apex angle in interval �60�; 90��. Two
different orientations of the rhombus cell are compared:
rhombus diagonals along gap minimum (velocity maxi-
mum) and along velocity minimum (gap maximum) (see
Fig. 1). Since the numerical computation is very demand-
ing and time-consuming, we limit ourselves to the four
configurations (apex angles 60� and 90� for each of the
two orientations) as shown in Fig. 1.

In Fig. 2(a) we show the phase diagram for t � T=Tc �
0:5 and � � 0, where the square lattice �v becomes
stable if the Fermi velocity anisotropy � exceeds a cer-
tain value. It shows also that the triangular lattice is
always stabilized at lower and higher H. Thus even with-
out the gap anisotropy (� � 0) the reentrant transforma-
tion can be induced. This can be understood by looking at
the self-consistency equation (3). It is seen that factor
1=v�	� plays the role of gap anisotropy even in the iso-
tropic pairing case [��	� � 1].

The gap anisotropy further induces a rich variety of the
phase diagram. In Fig. 2(b) we show it when the moderate
237004-2
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velocity anisotropy � � 0:3 is taken. We see that at the
large � cases the triangular lattice directly changes into
the square lattice �g. This is a similar situation to the
d-wave case with the isotropic Fermi velocity [24]. The
preferred orientation perfectly coincides with the nodal
direction; namely, nearest neighbors of FLL are along
(100) [along (110)] in dxy [dx2	y2] pairing. As � decreases,
this �g lattice region shrinks. At lower fields yet another
transformation from the triangular to square �v, rotated
by 45� relative to �g, emerges. The most complicated
case is at moderate values of � and �, leading to succes-
sive lattice transformation 4 ! �v ! 4 ! �g as H in-
creases. In a weaker � case the last lock-in transition is
absent.

As an example we investigate the case � � � � 0:3 at
lower temperature. In Fig. 3 the four free energy curves
are shown as a function of h � H=Hc2; 0 at t � 0:25. As h
increases the above mentioned successive transformations
are clearly illustrated as several crossings. Figure 4 dis-
plays the resulting phase diagram in the (H; T) plane. It
is seen from this that (i) the �v region is confined to
lower H and T, (ii) its boundary bends away from Hc2,
(iii) the high field region is occupied by the �g lattice,
and (iv) along the Hc2 line this terminates at t � 0:56,
below which the rhombic lattice becomes stable.

Let us discuss the physical origin of this intricate phase
diagram in connection with the observation in borocar-
bides. In order to induce the narrowly limited �v region
at low H and T we need the competing effects, each
coming from the gap and velocity anisotropies. The gap
anisotropy with � > 0 prefers the lattice �g with nearest
neighbors along the (100) direction, while the velocity
anisotropy with � > 0 tends to favor the 45� rotated
square lattice �v. These anisotropies compete with each
other. The ��< 0 case does not cause such a frustration
in FLL.

The interplay of two anisotropies can be understood by
looking at the free energy density at lower H:

F �
B2
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FIG. 3. Field dependence of free energy for 4v, 4g, and �g
relative to �v. T=Tc � 0:25; � � � � 0:3. Free energies of 4v
and 4g are almost identical.
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where q is the reciprocal vector of FLL and

tijlm �
4
4N0v

4
FT�2

0

�2
0

X
!>0

*
�2�	�v3�	�uiujulum
�!2 ��2�	��2

0�
5=2

+
; (7)

where # is the penetration depth and �0�T� is the zero
field gap. The extra fourfold anisotropy due to nonlocal
correction appears through the parameter d �
txxxx � tyyyy 	 6txxyy in the above. At lower T, tijlm con-
tains factor v3�	�=�3�	� which strengthens the tendency
towards the velocity anisotropy (� is effectively in-
creased by � when �� > 0). Near Tc this factor becomes
�2�	�v3�	� which weakens the combined anisotropy ef-
fect by canceling each other. Therefore the two anisotro-
pies play a different role, depending on T, giving rise to
the bent transition curve in the (H; T) plane. For a fixed
temperature as H increases from Hc1, FLL starts with the
regular triangle lattice because the electromagnetic inter-
action between far apart vortices is isotropic, yielding the
closed packed hexagonal symmetry just above Hc1. As
vortices approach each other, proliferating anisotropy in
current distribution will squeeze the rhombus FLL cell
toward the square shape. Being dominant at the low T
region, anisotropy of Fermi velocity will stabilize square
lattice �v as soon as vortices come close to each other
with increasing H. The observed orientation of �v with
nearest neighbors along (110) is indeed expected in
LuNi2B2C since the band structure calculation indicates
that Fermi velocity is larger in (100) than (110) when
mapped into our fourfold model [22]. The same result is
obtained within the nonlocal London model with Fermi
velocity anisotropy alone [25]. Upon further increas-
ing H, condensation energy gradually takes over the
major role in determining the interaction between vorti-
ces. Physically it is due to the kinetic energy cost of
quasiparticles localized around the core (see Ref. [24]
for details). In high fields, at least in high-� superconduc-
tors, the anisotropy in the vortex-vortex interaction is
exclusively due to the vortex core anisotropy giving rise
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to the transition from the low field �v to high field �g via
intermediate rhombic lattice (�v ! 4 ! �g).

The limit of H � Hc2�T� allows the analytical solution
for free energy

F �
B2

8

	

1

8

�B	Hc2�

2

F � 1
; (8)

where

F �
2
2N0T

h2
s

X
!>0

�
��	�
v�	�

ffy��fy � ��f�
�
	

h2
s

h2
s

: (9)

Here, f, fy, and � are solutions of the linearized
Eilenberger equation, hs is the magnetic field due to
supercurrents, and B � H � hs is magnetic induction.
In the isotropic case � � � � 0 and near Tc it reduces
to the standard Abrikosov expression F � �2�2 	 1��A
[�A � j�j4=�j�j2�2]. This expression for free energy is
valid all along the Hc2�T� line. The result is illustrated in
Fig. 4 as the inset showing that the apex angle of the
rhombic lattice continuously changes about the regular
triangular lattice with 60�. The diagonal of the rhombic
lattice rotated by 45� at t � 0:64 from (100) to (110), i.e.,
from 4v to 4g. At a higher field the 4g lattice is locked
in �g. This lock-in point t � 0:56 is rather nicely con-
nected to the points determined numerically as shown in
the main panel in Fig. 4. This implies that our numerical
results, which examine the limited number of lattice
configurations (four types), yield a reasonable phase dia-
gram even taking into account general rhombic lattices.

The present calculation does not aim to quantitatively
reproduce the actual FLL phase diagram in LuNi2B2C
but to physically understand its possible lattice transfor-
mation. Note that so far the observed square lattices in
LuNi2B2C by several methods are all �v, not �g. The �g
phase can occur at further high H if the gap anisotropy
is large enough. Since this is the case for LuNi2B2C
as mentioned before, there is a good chance to observe
it. According to the band calculation [22], � is estimated
to 0:6–0:8. As for the gap anisotropy the identified
gap function with point node by Maki et al. [26] yields
�� 0:7 for our model. These parameters essentially give
the same phase diagram as in Fig. 4. This unambiguously
tells us that LuNi2B2C belongs to the most interesting
competing case (� > 0 and � > 0) and it is also grati-
fying enough that it belongs to the naively expected
case where the maximum energy gap is oriented to the
maximum DOS direction. So far the investigated field
for the vortex structure is limited below 4 T (compare
Hc2; 0 � 9 T).

As for the other materials where the square lattice is
found, such as Nb [14], V3Si [8], and Sr2RuO4 [27], we
can expect the reentrant transition from the square to
rhombic lattice and further lock-in transition to the
square lattice with different orientation if the gap anisot-
ropy is strong enough. The recent finding of rhombus-to-
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square transition at lower H in La1:83Sr0:17CuO4 [9] de-
serves special attention because in spite of dx2	y2 sym-
metry they discovered �v, not �g. This nontrivial
observation is indeed expected by our calculation.

In conclusion, we have shown that the vortex lattice
morphology is deeply connected to the underlying micro-
scopic electronic structure. Specifically it is seen that
the reentrant transition from the square to the rhombic
lattice in LuNi2B2C can be well understood as arising
from the two competing superconducting gap and Fermi
surface anisotropies both of which are documented to
exist experimentally. It is demonstrated by solving the
quasiclassical Eilenberger equations numerically and
analytically. We have shown another not yet found FLL
transformation to the differently oriented square lattice in
a higher field. In view of the physical origin given, this
kind of reentrance and high field square lattice are rather
generic to occur. Thus we expect a similar successive
transition in type-II superconductors with fourfold sym-
metry at least with large �.
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