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In high-Tc cuprates, the Nernst coefficient (�) as well as the magnetoresistance (��=�) increases
drastically below the pseudogap temperature, T�, which attracts much attention as a key phenomenon in
the pseudogap region. We study these transport phenomena in terms of the fluctuation-exchange � T –
matrix approximation. In this present theory, the d-wave superconducting (SC) fluctuations, which are
mediated by antiferromagnetic (AF) correlations, become dominant below T�. We especially inves-
tigate the vertex corrections both for the charge current and the heat one to keep the conservation laws.
As a result, the mysterious behaviors of � and ��=� are naturally explained as the reflection of the
enhancement of the SC fluctuation, without assuming thermally excited vortices. The present result
suggests that the pseudogap phenomena are well described in terms of the Fermi liquid with AF and SC
fluctuations.
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which is an off-diagonal TEP under the magnetic field
B k z. According to the linear response theory,

q

where  k � coskx � cosky and
P
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. The
In high-Tc cuprates, various transport phenomena in
the normal state show striking non-Fermi-liquid(NFL)-
like behaviors, such as resistivity (�) [1], Hall coefficient
(RH) [2], magnetoresistance [(MR), ��=�] [3–5], ther-
moelectric power [(TEP), S] [6], and Nernst coefficient
(�) [7,8]. Because it is impossible to understand these
NFL-like phenomena in the framework of the relaxation
time approximation (RTA), one may consider that the
Landau-Fermi liquid picture —concept of the quasipar-
ticle —is totally violated in high-Tc cuprates. However,
before making a conclusion on this issue, one has to study
the transport coefficients beyond the RTA, e.g., by the
‘‘conserving’’ approximation as Baym and Kadanoff [9].

In the past few years, we have studied RH [10], ��=�
[11,12], and S [13] in high-Tc cuprates above the pseudo-
gap temperature (T�) in terms of the conserving approxi-
mation: Owing to the vertex corrections (VC’s) for
currents, the total charge current with VC’s, ~JJk, is no
more perpendicular to the Fermi surface in the presence
of strong antiferromagnetic (AF) fluctuations. This
important mechanism of the VC, i.e., the ‘‘backflow’’ in
the hydrodynamic regime, had been overlooked for years
[10]. As a result, we succeeded to reproduce various
NFL-like transport phenomena qualitatively as for
T > T� [14].

In this Letter, we study transport phenomena below T�.
In the present stage, superconducting (SC) fluctuation is
one of the promising origins of the pseudogap phenomena
[15–18]. Based on this opinion, we combine the
fluctuation-exchange (FLEX) approximation for describ-
ing the AF fluctuations [19] with the T-matrix approxi-
mation for describing the SC fluctuations (i.e.,
FLEX� T–matrix approximation) [16–18]. Next, we
study the Nernst coefficient, � � Syx=B � �Ey=B@xT,
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� � ��xy=�� S tan�H�=B; (1)

where �xy is the off-diagonal Peltier conductivity [Jx �
�xy	�@yT
], and tan�H � �xy=�. In high-Tc cuprates, �
increases divergently below T�, which is sometimes in-
terpreted as the evidence for the spontaneous vortexlike
excitations in the pseudogap region [7,8]. [In the mixed
state, � takes a very large value in a clean 2D system,
reflecting the high mobility of a vortex.] Contrary to such
an exotic scenario, in the present work, we study � due to
the heat current carried by the quasiparticle motion. By
considering the VC’s due to strong AF and SC fluctua-
tions, we obtain the results which are highly consistent
with experiments. Thus, the nature of the pseudogap
region is well described as the Fermi liquid with the
strong AF� SC fluctuations.

In the self-consistent FLEX� T –matrix approxima-
tion, the full Green function and the self-energy are given
by

Gk	�n
 � �i�n ��� �0k � �k	�n
�
�1; (2)

�k	�n
 � �FLEX
k 	�n
 ��SCF

k 	�n
; (3)

where �0k is the tight binding dispersion and �n is a
fermion Matsubara frequency. �FLEX is given by the
diagrams for the FLEX approximation, and �SCF is given
by the T-matrix approximation [16–18]. This is a kind of
the one-loop approximation with respect to the AF and
SC fluctuations. In the pseudogap region, �SCF is approxi-
mately given by [15]

�SCF
k 	�n
 � ��2

pg 
2
kGk	��n
; (4)

�2
pg � T

X0
tpg	q; ! � 0
; (5)
 2002 The American Physical Society 237003-1



FIG. 1. (a) The DOS obtained by the self-consistent
FLEX� T–matrix approximation. T � 0:1 corresponds to
300–400 K. (b),(c) j ~JJkj and �Jk obtained by the Bethe-
Sapleter (BS) equation (13) for various �pg.
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factor a 1 is introduced not to overestimate the effect
of SC fluctuations. We put a � 0:03 in the present cal-
culation, which would be smaller than the inverse of the
SC coherent length. The result is not sensitive to its value,
and this approximation becomes reasonable as T ! Tc,
which is the favorite for the purpose of our study. tpg	q; !

is the T matrix for the dx2�y2-wave channel, which is
mediated by strong AF fluctuations.

To derive tpg, we solve the Eliashberg equation:

!"k	�n
 � �T
X
k0;�m

VFLEX
k�k0 	�n � �m
jGk0 	�m
j

2"k0 	�m
;

where VFLEX
k is the effective interaction for a singlet pair

within the FLEX approximation, which is given by
Eq. (9) of Ref. [10] using the Green function in Eq. (2).
! is the eigenvalue of the equation which exceeds 1 below
Tc. Hereafter, the eigenfunction " is normalized asP

k;l "
2
k	�l
 � 1. By using ", we can approximate that

VFLEX
k�k0 	�� �0
 � g"k	�
"k0 	�0
; (6)

where g �
P
�;�0

P
k;k0 VFLEX

k�k0 	�� �0
"k	�
"k0 	�0
. Then,
the T matrix is given by

tpg	q;!l
 � g=�1� g �((q	!l
�; (7)

�((q	!l
 � T
X
k;�n

Gk	�n
Gq�k	!l � �n
"
2
k	�n
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where !l is a Matsubara frequency for boson. It is easy to
see that ! � �g �((q�0	0
 according to Eq. (6). In the
FLEX� T–matrix approximation, we solve Eqs. (2)–(8)
self-consistently. In this approximation, ! < 1 is satisfied
in 2D systems at finite temperatures because a Kosterlitz-
Thouless–type transition is not taken into account.

In the present numerical study for the Hubbard model,
we put U � 4:5 and 	t; t0; t00
 � 	�1; 0:15;�0:05
 for
La2�xSrxCuO4 (LSCO), where t; t0; t00 are the nearest,
the next-nearest, and the third-nearest neighbor hoppings,
respectively. Figure 1 shows the obtained density of states
(DOS); �	�
 � 1

 

P
k ImGk	�� i+
. We see that a deep

pseudogap emerges below T� � 0:03, because SC fluctua-
tions grow prominently below T� [16–18]. In the present
self-consistent calculation, ! � 0:988 and �pg � 0:147 at
T � 0:02.

Next, we calculate the Nernst coefficient by taking
VC’s into account. Based on the linear response theory
for the thermoelectric transport phenomena [20], we can
derive the general expression for �xy in correlated elec-
tron systems by referring to the derivation for �xy by
Kohno et al. [21]. The VC is uniquely given by the Ward
identities associated with the local charge and energy
conservation laws [22]. The obtained expression, which
is exact with respect to O	-�2
, is given by

�xy �B �
e2

T

X
k

Z d�
2 

�
�
@f
@�

�
� jImGk	�
jjGk	�
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2 � j ~vvk	�
j-k	�
Ak	�
; (9)
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X
k0
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~JJk	�
 � ~vvk	�
 �
X
k0

Z d�0

4 i
T kk0 	�; �0
jGk0 	�0
j2 ~JJk0 	�0
;

(12)

where kk is the momentum along the Fermi surface,
~vvk	�
 � ~rr��0k � Re�k	�
�, and ~qqk	�
 � � � ~vvk	�
. T is
the irreducible VC introduced by Eliashberg as T 	0


22 [23].
Next, we calculate the total charge current ~JJ and the

heat one ~QQ numerically. Here, we take only the infinite
series of the Maki-Thompson(MT)–type VC’s due to the
AF and SC fluctuations although the Ward identity gives
other terms, because they are expected to be most im-
portant when the fluctuations are strong [10,17]. In the
present FLEX� T –matrix approximation, the Bethe-
Salpeter equation (12) is simply written as

~JJk	�
 � �-k	�
=-
FLEX
k 	�
�

�

"
~vvk	�
 �

X
k0

Z d�0

4 i
T FLEX

k;k0 	�; �0


� jGk0 	�0
j2 ~JJk0 	�0


#
; (13)

where T FLEX represents the MT terms due to the AF
fluctuations, whose functional form is given by Eq. (A9)
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of Ref. [10]. Note that the factor -k=-
FLEX
k comes from the

MT terms due to the SC fluctuations, which becomes
unity if �qp � 0. Performing a similar discussion as in
Sec. V of Ref. [10] and using the relation -FLEX

k �P
k0

R
d�
4 T

FLEX
k;k0 	0; �
ImGA

k0 	�
, the following approximate
relation is derived from Eq. (13) [24]:

~JJk � 	-k=-FLEX
k 
 ~JJ

��qp�0�
k ; (14)

where ~JJ
��qp�0�
k is given by the FLEX approximation with-

out �SCF
k and T SCF ( � T �T FLEX), whose behavior

was analyzed in Ref. [10] in detail.
Figure 1 shows the numerical solution for the Bethe-

Sapleter equation (13) for various �pg at T � 0:02 [10,17].
As �pq increases, j ~JJkj is prominently enhanced except for
the cold spot (C), whereas �Jk � tan�1	Jkx=Jky
 is af-
fected only slightly. The result is consistent with
Eq. (14) because -k=-

FLEX
k � 1� b 2

k, where b > 0
and b increases as T approaches to Tc. As a result, owing
to the MT terms by the dx2�y2-SC fluctuations, jJkj is
enhanced if �pq is large, except for the cold spot where
 k � 0. A more detailed discussion will be given in a
future publication [24]. In contrast, we can show that
~QQk	�
 � ~qqk	�
 because the effect of the VC for the heat
current, which is not conserved by the electron-electron
N processes, is small in general [22,24]. This means that
~QQk is no more parallel to ~JJk in the presence of strong AF
fluctuations. This fact is important for understanding the
Nernst effect as will be explained.

Now we calculate transport coefficients by using the
self-consistent solutions of Eqs. (11) and (12). Figure 2
shows the resistivity, the Hall coefficient, and the TEP
obtained by the FLEX� T –matrix approximation,
�AF�SC, RAF�SC

H and SAF�SC, for the filling n � 0:92.
For reference, �AF, RAF

H , and SAF are given by the FLEX
FIG. 2. Transport coefficients per one layer studied by the
FLEX� T–matrix approximation with VC’s (AF� SC).
h=e2 � 1:3� 106 '.
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approximation. We see that both RAF�SC
H and SAF�SC start

to decrease below the pseudogap temperature T� � 0:03,
which is consistent with experiments [2,6], whereas RAF

H
and SAF increase monotonously as T decreases because
both quantities are enhanced due to the VC’s created by
the AF fluctuations [10,13]. The reason why both RAF�SC

H
and SAF�SC decrease below T� is that the AF fluctuations
are suppressed in the pseudogap region, which was at first
discussed in Refs. [10,13] and shown numerically in
Ref. [17] for RH.

On the contrary, the drastic enhancement of the Nernst
coefficient below T� is a very mysterious and intriguing
phenomenon in the pseudogap region [7,8]. Here, we show
that it is naturally explained as a quasiparticle transport
phenomenon, without assuming thermally excited vorti-
ces. Based on the AF� SC fluctuation theory, we calcu-
late �xy given by Eq. (9): Fig. 3 shows the Nernst
coefficient obtained by the FLEX� T –matrix method,
�AF�SC, with full MT-type VC’s due to AF� SC fluctua-
tions. We see that �AF�SC starts to increase below T�, and
its magnitude is consistent with experimental values. In
contrast, S tan�H decreases at lower temperatures, reflect-
ing the suppression of the AF fluctuations.

Here we discuss the reason why � is enhanced in the
presence of AF and d-SC fluctuations: The factor -kAk in
Eq. (9) is rewritten as

~QQk � ~JJk
@�Jk
@kk

� 	 ~QQk � ~JJk
z
@
@kk

log	j ~JJkj=-k
: (15)

According to Fig. 1(b), the second term with the factor
@
@kk

j ~JJkj should cause the enhancement of � in the pseudo-
gap region: It does survive because ~JJk is not parallel to
~QQk due to theVC’s by strong AF fluctuations. In contrast,
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FIG. 3. �AF�SC and �S tan�H�AF�SC studied by the
FLEX� T–matrix approximation with VC’s. �exp is the ex-
perimental data reported in Ref. [2] for LSCO (x � 0:07),
assuming that T � 0:1 corresponds to 300 K.
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this term vanishes identically within the RTA because of
~vvk k ~qqk.

Finally, we discuss the MR, ��=�, in the pseudogap
region. Figure 4 shows the calculated ��=� vs tan2�H �
	�xy=�
2 for the filling n � 0:92. First, in the FLEX
approximation (AF only), ��=� / tanm�H and m � 1:5
is approximately satisfied. Note thatm � 2 is obtained for
n� 0:85 by the FLEX approximation [12], which is
called the modified Kohler rule observed in high-Tc
cuprates for T > T� [3–5]. In contrast, according to the
present FLEX� T –matrix approximation where the ef-
fect of SC fluctuations is involved (AF� SC), the relation
��=� / tanm�H is prominently violated in the pseudogap
region: As shown in Fig. 4, ��=� starts to increase
abruptly below T� � 0:03, while the suppression of
tan�H starts at the same time. The obtained result is
very well consistent with experiments [3–5].

Now, we discuss why ��=� increases drastically below
T�: The expression for magnetoconductance (��xx),
which is given by Eq. (7) of Ref. [12], has a term propor-
tional to 	 @@kk

jJkj
2. As discussed before, this factor causes
the drastic increase of ��=� below T� [see Fig. 1(b)]. As a
result, we find the reason why both � and ��=� are
enhanced in the pseudogap region. In the meanwhile,
other quantities such as �, RH, and S decrease below T�

because of the lack of the factor @
@kk

jJkj.
We note that the positive MR below T� is frequently

ascribed to the magnetic field suppression of the transport
due to SC fluctuations, which is theoretically expressed as
the Aslamazov-Larkin term. However, one has to assume
a rather large coherent length in the underdoped region
( & 40 )A) to fit the observed huge MR [5]. Instead, the
237003-4
present work naturally explains the increase of ��=�
below T�, as well as �, in terms of the quasiparticle
transport phenomena, which is expressed as the infinite
series of MT terms.

In summary, we studied the origin of the transport
anomaly in the pseudogap region using the FLEX� T –
matrix approximation. Below T� in hole-doped com-
pounds, the resistivity, the TEP, and the Hall coefficient
decrease moderately, whereas the Nernst coefficient and
the MR increase drastically. In the present study, we
could reproduce the characteristic behaviors of these co-
efficients satisfactorily. Especially, the drastic increase of
� and ��=� below T� is naturally explained as the
quasiparticle origin, by taking the VC’s due to the AF
and SC fluctuations correctly. Thus, unusual transport
properties of high-Tc cuprates are well explained as the
quasiparticle transport phenomena.
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