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Ehrenfest-Time-Dependent Excitation Gap in a Chaotic Andreev Billiard
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A semiclassical theory is developed for the appearance of an excitation gap in a ballistic chaotic
cavity connected by a point contact to a superconductor. Diffraction at the point contact is a singular
perturbation in the limit �h ! 0, which opens up a gap Egap in the excitation spectrum. The time scale
�h=Egap / ��1 ln �h (with � the Lyapunov exponent) is the Ehrenfest time, the characteristic time scale of
quantum chaos.
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FIG. 1. Solid curve: Density of states BS of a chaotic
Andreev billiard (inset), which is gapless according to the
semiclassical Bohr-Sommerfeld approximation (1). The dashed
line indicates schematically the phenomenon that we seek to
describe in this paper: The opening of a gap at the inverse
vide a complete description of this regime [4,14–16].
The opposite regime �E � �c has no analog in the con-

Ehrenfest time as a result of diffraction at the contact with the
superconductor.
The density of states in a normal metal is suppressed
near the Fermi energy when it is brought into contact
with a superconductor. The history of this proximity
effect goes back to the 1960s [1]. It was understood early
on [2] that the energy range of the suppression is the
inverse of the typical life time �c of an electron or hole
quasiparticle in the normal metal. This lifetime is finite
(even at zero temperature) because an electron is con-
verted into a hole by Andreev reflection at the interface
with the superconductor [3]. The energy scale Ec � �h=�c,
known as the Thouless energy, is the product of the mean
level spacing � in the normal metal and the dimensionless
conductance of the contact to the superconductor. (For
example, Ec � N� for coupling via an N-channel ballis-
tic point contact.) The appearance of an excitation gap of
the order of the Thouless energy is the essence of the
traditional proximity effect.

Some years ago it was realized [4–9] that the proxim-
ity effect is essentially different if the normal metal
becomes so small and clean that scattering by impurities
can be neglected. This applies to a quantum dot in a two-
dimensional electron gas [10], and because of the resem-
blance to a billiard (cf. Fig. 1) one speaks of an ‘‘Andreev
billiard’’ [11,12]. Depending on the shape of the billiard,
the classical dynamics varies between integrable and
chaotic. No excitation gap is induced by the proximity
effect in an integrable billiard [4,8]. An excitation gap
does appear in a chaotic billiard [4,6], but its magnitude is
given by the Thouless energy only if the chaos sets in
sufficiently rapidly [5,9].

The characteristic time scale of quantum chaos is the
Ehrenfest time �E � ��1 ln�L=	F�, defined in terms of
the Lyapunov exponent � (being the rate at which nearby
trajectories diverge exponentially in time) and the relative
magnitude of the Fermi wavelength 	F � 2
=kF and a
typical dimension L of the billiard [13]. Chaotic dynam-
ics requires ��1 � �c, but �E could be either smaller or
larger than �c. In the regime �E � �c the excitation gap is
set as usual by the Thouless energy. Established tech-
niques (random-matrix theory, nonlinear � model) pro-
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ventional proximity effect. Random-matrix theory is
helpless and this regime has also shown a frustrating
resilience to solution by means of the ballistic � model
[9]. In particular, no mechanism has yet been demon-
strated to produce the hard gap at �h=�E conjectured by
Lodder and Nazarov [5].

Here we report an attack on this problem by an alter-
native approach, starting from the semiclassical Andreev
approximation to the Bogoliubov–De Gennes (BdG)
equation [3]. The limit �E ! 1 yields the Bohr-
Sommerfeld approximation to the density of states [4–6],

BS�E� �
2

�
�Ec=4E�

2 cosh�Ec=4E�

sinh2�Ec=4E�
; (1)

which is gapless (cf. Fig. 1).We have found that diffraction
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at the contact with the superconductor is a singular
perturbation to BS that opens up a gap at the inverse
Ehrenfest time, and provides an intuitively appealing
mechanism for the gap phenomenon.

We recall the basic equations. The electron and hole
components u�r� and v�r� of the spinor wave function
satisfy the BdG equation�

H �
�
 �H

��
u
v

�
� E

�
u
v

�
; (2)

which contains the single-particle Hamiltonian H �
�r2 � V�r� � EF (with confining potential V) and the
pair potential ��r� (vanishing in the normal metal and
equal to �0 in the superconductor). The energy E is
measured relative to the Fermi energy EF � k2F, in units
such that �h2=2m  1. (In these units the mean level
spacing � is related to the area A of the billiard by � �
4
=A.) We assume that the motion inside the billiard is
ballistic (V � 0) and that the interface with the super-
conductor is a ballistic point contact of widthW � 	F (so
that the number of channels N � 2W=	F � 1 and the
Thouless energy Ec � N� � �). We work in the regime
�0 � �hvF=W (which also implies �0 � Ec), to ensure
that the excitation spectrum is independent of the proper-
ties of the superconductor.

For a semiclassical description one substitutes �u; v� �
� �uu; �vv�AeiS, with �hS the action along a classical trajectory
at the Fermi energy. The wave amplitude A is related to
the classical action by the continuity equation r �
�A2rS� � 0, while S itself satisfies the Hamilton-Jacobi
equation jrSj2 � EF � V (so that �hrS is the momentum
along the trajectory). The BdG equation takes the form�

�2ikF@s � �H �
�
 2ikF@s � �H

��
�uu
�vv

�
� E

�
�uu
�vv

�
; (3)

with �H �uu � �A�1r2�A �uu�. The derivative @s �
k�1
F �rS� � r is taken along the classical trajectory. The

Andreev approximation consists in neglecting the term
�H containing second derivatives of the slowly varying
functions A; �uu; �vv.

We consider a classical trajectory that starts as an
electron at a point q 2 �0; W� along the interface with
the superconductor, making an angle � 2 ��
=2; 
=2�
with the normal (cf. Fig. 1). The product b � q cos� is the
‘‘impact parameter.’’ The trajectory returns to the inter-
face after a path length ‘, and then it is retraced in the
opposite direction as a hole. The coordinate s 2 �0; ‘�
runs along one repetition of this trajectory. We count
trajectories with measure dq d sin� � db d�, corre-
sponding to a uniform measure in phase space.
Equivalently, we can sum over scattering channels n �
1; 2; . . .N, related to � by n � Nj sin�j.

If we ignore the term �H in Eq. (3) we recover the
Bohr-Sommerfeld density of states [4–6]. Indeed, with-
out �H the solution of the eigenvalue problem is
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�
; Em � m
kF=‘; (4)

with m � �1;�3;�5 . . . running over positive and nega-
tive odd integers. The path length ‘ in a chaotic billiard
varies in a quasirandom way upon varying the initial
conditions q and �, with an exponential distribution
P�‘� � �‘‘�1 exp��‘= �‘‘�. (The mean path length is �‘‘ �
4
kF=Ec [17].) The density of states

�E� � N
Z 1

0
d‘P�‘�

X1
m�1;3;5

��E� Em�‘�� (5)

then evaluates to the BS of Eq. (1).
The key assumption that will enable us to go beyond the

Andreev and Bohr-Sommerfeld approximations is to as-
sume that the amplitude A varies more slowly in space
than the spinor components �uu and �vv, so that we can
approximate �H by �r2 (neglecting derivatives of A).
The characteristic length scale LA for the spatial depen-
dence of A is set by the smoothness of the confining
potential V, while the characteristic length scale for
�uu; �vv is the contact width W. By assuming LA � W we
consider the case that diffraction occurs predominantly at
the interface with the superconductor, rather than inside
the billiard. Since A depends on the shape of the billiard,
this is the regime in which we can hope to obtain a
geometry-independent ‘‘universal’’ result.

To investigate the effect of �H we restrict the dimen-
sionality of the Hilbert space in two ways: First, we
neglect any mixing of the N scattering channels. (This
is known to be a good approximation of the diffraction
that occurs when a narrow constriction opens abruptly
into a wide region [18]; it does not require smooth corners
in the contact.) Second, since we are interested in excita-
tion energies E � Ec, we include only the two lowest
eigenstates m � �1 of the zeroth-order solution (4). [The
contributions from higher levels are smaller by a factor
exp��Ec=2E�.] We need to include both E1 and E�1,
although the excitation spectrum contains only positive
eigenvalues, because of the (virtual) transitions between
these two levels induced by �H. With these restrictions
we have for each scattering channel a one-dimensional
eigenvalue problem. The effective Hamiltonian H eff

is a 2� 2 matrix differential operator acting on func-
tions of b.

We write H eff � H 0 �H 1, where H 0 corresponds
to the Andreev approximation and H 1 contains the dif-
fractive effects. The zeroth-order term is diagonal,

H 0 �

�

kF=‘�b� 0

0 �
kF=‘�b�

�
: (6)

The relation between ‘ and b is determined by the differ-
ential equation d‘=db � g�b� exp�$‘�, which expresses
the exponential divergence of nearby trajectories (in
terms of a Lyapunov exponent $ � �=vF given as inverse
length rather than inverse time). The preexponential g�b�
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FIG. 2. Low-energy density of states �E� of the effective
Hamiltonian (10), related to �!� of the biharmonic Eq. (14)
by Eq. (18). The plot is for j ln'j � 10 and has been smoothed
with a Lorentzian. The inset shows the logarithmic pair
potential appearing in H eff , the ground state of which is the
excitation gap (dashed line).
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is of order unity, changing sign at extrema of ‘�b�. Upon
integration one obtains

$‘�b� � � lnj$bj �O�1�; j$bj � 1; (7)

where we have shifted the origin of b such that b � 0
corresponds to a local maximum ‘max � �‘‘ of ‘�b�. [The
logarithmic singularity is cut off at j$bj &

exp��$‘max�.] There is an exponentially large number
N �‘� / exp�$‘� ‘= �‘‘� of peaks around which Eq. (7)
applies.

To obtain the diffractive correction H 1, in the regime
that �H � �r2, we express the Laplacian in the local
displacements ds and db for fixed �. The functional form
of the transformation is

x � x��s; b�; (8)

where x��s; b� is the classical trajectory specified by the
initial (i.e., s � 0) direction � and impact parameter b.
The resulting partial differential operators are as follows:
(i) @2s , which has a prefactor of order 1; (ii) @s@b, which
has a prefactor proportional to �@sx� � @bx��; and (iii) @2b
which has a prefactor proportional to j@bx�j�2 ’ e�2$s.
The first term @2s is a small correction to the zeroth-order
density of states. The second term has a prefactor that is
rapidly fluctuating with s and has zero average, thus will
be subdominant. The third term, in contrast, is a singular
perturbation because it associates a kinetic energy with
the variable b. The resulting zero-point motion implies a
nonzero ground state energy, and hence it is responsible
for the opening of an excitation gap. Projecting H 1 (with
@H � �e�2$s@2b) onto the space spanned by the two low-
est eigenfunctions n � �1 of Eq. (4), and retaining only
the leading order terms in 1=$‘, we find

H 1 �

�
0 i
�i 0

�


4

d
db

�$‘�b���2 d
db

�O�$‘��3: (9)

The effective Hamiltonian can be brought into a more
familiar form by the unitary transformation H eff !
e�i�1
=4H effei�1
=4 (with �i a Pauli matrix), followed
by the change of variable x � $b� $b lnj$bj (in the
range jxj< 1). We work again to leading order in 1=$‘,
and find

H eff � 
kF$
�
�' @2x �i= lnjxj
i= lnjxj ' @2x

�
; ' 

$
4kF

:

(10)

This effective Hamiltonian has the same form as the BdG
Hamiltonian (2), for a fictitious one-dimensional system
having V � EF and having a pair potential ��x� that
vanishes logarithmically / 1= lnjxj at the origin (cf.
Fig. 2). The kinetic energy ' @2x gives a finite excitation
gap, even though ' � 1. Let us now compute this gap.

Since ei�2
=4H 2
effe

�i�2
=4 is a diagonal matrix,
the spectrum of H eff is given by the scalar eigenvalue
problem
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�������' d2

dx2
�

i
lnjxj

�������
2
��x� �

�
E


kF$

�
2
��x�: (11)

The ground state energy is the excitation gap Egap. To
generate an asymptotic expansion of Egap for small ', we
first multiply both sides of Eq. (11) by a factor Z2 and then
substitute x � X

������
'Z

p
. This results in������� d2

dX2 � iU

�������
2
� �

�
ZE

kF$

�
2
�; (12)

U�X� �
2Z
ln'Z

�
1�

2 lnjXj
ln'Z

�O�ln'Z��2

�
: (13)

We now choose Z such that Z2 � � ln3'Z and obtain the
biharmonic equation

�d4=dX4 � 16 lnjXj�� � !�; (14)

! � �ZE=
kF$�
2 � 4Z2=3 �O�Z�1=3�: (15)

The ground state of Eq. (14) is at !0 � 14:5.
Substituting in Eq. (15), and using Z2=3 � j ln'j �
3
2 lnj ln'j �O�1= ln'�, we arrive at

Egap �
2
kF$
j ln'j

�
1�

3 lnj ln'j
2j ln'j

�
!0

8j ln'j
�O�ln'��3=2

�
:

(16)

Only the leading order term is significant in view of the
approximations made in Eq. (10). Restoring the original
variables we have
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Egap �

 �h�

ln�vF=�	F�
: (17)

The Ehrenfest time �E � ��1 ln�L=	F� contains the clas-
sical length L � vF=�, which is of the order of the linear
dimension of the billiard.

The density of states �!� of the biharmonic Eq. (14)
can be calculated numerically [19]. The density of states
�E� near the gap is related to �!� by

�E� �
8N j ln'j
Egap

�! � !0 � 8j ln'j�E=Egap � 1��;

(18)

and is plotted in Fig. 2 for j ln'j � 10. The factor N /
exp�
kF$=Egap � Ec=Egap� counts the number of peaks in
‘�b� around which H eff applies. The Bohr-Sommerfeld
approximation (1) corresponds to the large-! asymptote
�!� � 1

16 exp�!=16�. Since !�!0 � 1 implies
E=Egap � 1 � 1=j ln'j, the width �E ’ Egap=j ln'j of
the energy range above the gap in which the Bohr-
Sommerfeld approximation breaks down is small com-
pared to the gap itself.

Because H eff has only a few levels in the range �E,
the density of states �E� oscillates strongly in this range.
The levels are highly degenerate (by a factor N ) in our
approximation. Tunneling between the levels will remove
the degeneracy and smooth the oscillations. (A small
amount of smoothing has been inserted by hand in
Fig. 2.) These density of states oscillations with a period
set by the Ehrenfest time are reminiscent of those found
by Aleiner and Larkin in the energy level correlation
function of a normal metal [13].

In conclusion, we have analyzed a mechanism for the
‘‘gap phenomenon’’ in the proximity effect of chaotic
systems. Diffraction at the contact with the superconduc-
tor is described by an effective Hamiltonian H eff that
contains (i) a kinetic energy which vanishes in the clas-
sical limit and (ii) a pair potential with a logarithmic
profile. The resulting excitation gap Egap (being the
ground state energy of H eff) vanishes logarithmically
as the ratio of the Fermi wavelength and a classical length
scale (set by the Lyapunov exponent) goes to zero. The
time scale �h=Egap is the Ehrenfest time, providing a
manifestation of quantum chaos in the superconducting
proximity effect.
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