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Ground-State Phase Diagram of a Half-Filled One-Dimensional Extended Hubbard Model
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The density-matrix renormalization group is used to study the phase diagram of the one-dimensional
half-filled Hubbard model with on-site (U) and nearest-neighbor (V) repulsion and hopping t. A critical
line Vc�U� � U=2 separates a Mott insulating phase from a charge-density-wave phase. The formation
of bound charge excitations for V > 2t changes the phase transition from continuous to first-order at a
tricritical point Ut � 3:7t, Vt � 2t. A frustrating effective antiferromagnetic spin coupling induces a
bond-order-wave phase on the critical line Vc�U� for Ut < U & 7t.
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The properties of quasi-one-dimensional materials
have been extensively studied in recent years [1–3].
These materials exhibit rich phase diagrams and display
unusual optical properties due to the combination of
reduced dimensionality and strong electronic correla-
tions. Consequently, much effort has been devoted to
understanding the ground-state and optical properties of
theoretical one-dimensional correlated electron systems
such as the half-filled Hubbard model with on-site (U)
and nearest-neighbor (V) repulsion and hopping term t.
Nevertheless, the ground-state phase diagram of this
model is still controversial [4–10]. It is known [4]
that the system is a Mott insulator for U*2V and a
charge density wave (CDW) insulator for U&2V. The
quantum phase transition is continuous at weak coupling
(U;V� t) and first-order at strong coupling (U;V� t).
Numerically [4,5,10], one finds that the order of the
transition changes at a tricritical point (Ut;Vt) with
Vt=t�1:5–2:5, but this feature is not well understood.
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Recently, it has been proposed [8–10] that a bond-order-
wave (BOW) phase exists between the Mott and CDW
phases up to the tricritical point. Concurrently, the optical
properties of this model have been determined in the
Mott insulating phase [11–15]. In particular, it has been
found that the lowest optical excitations consist of a pair
of independent charge excitations for V�2t, while they
are bound states for V>2t. Surprisingly, the remarkable
proximity of the tricritical point to the boundary between
bound and free charge excitations has not been noticed
until now.

Here I investigate the ground-state phase diagram of
the half-filled one-dimensional extended Hubbard model
in the repulsive regime using the density-matrix renor-
malization group (DMRG) [16]. I show that the nature of
the low-lying charge excitations determines the order of
the transition and the position of the tricritical point. A
BOW phase is found only at intermediate coupling on the
critical line Vc�U� between Mott and CDW phases.

The model is defined by the Hamiltonian
ĤH � �t
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Here ĉc	l;�, ĉcl;� are creation and annihilation operators for
electrons with spin � �"; # at site l � 1; . . . ; N, n̂nl;� �
ĉc	l;�ĉcl;�, and n̂nl � n̂nl;" 	 n̂nl;#. I exclusively consider sys-
tems with an even number N of sites. At half filling, the
number of electrons equals N. The interaction is repulsive
U � V � 0. The Hamiltonian (1) has a particle-hole
symmetry and a spatial reflection symmetry. Thus, each
eigenstate has a well-defined parity under charge conju-
gation (Pc � 1) and belongs to one of the two irreduc-
ible representations, Ag or Bu, of the reflection symmetry
group. The ground state belongs to the symmetry sub-
space A	

g � �Ag; Pc� and optically excited states belong to
the symmetry subspace B�

u � �Bu;�Pc� because the cur-
rent operator is antisymmetric under charge conjugation
and spatial reflection [14].

DMRG [16] is known to be a very accurate numerical
method for one-dimensional quantum systems with
short-range interactions such as the Hamiltonian (1).
Here I use the finite-system DMRG algorithm to calculate
eigenenergies and static properties at low energy. Spin
gaps Es � E0�N; 1� � E0�N; 0� and single-particle charge
gaps Ec � 2�E0�N 	 1; 1=2� � E0�N; 0�� are derived
from the ground-state energies E0�Ne; Sz� for a given
number of electrons Ne and a given spin Sz. I also use a
symmetrized DMRG [15,17] method to calculate the
energy and static properties of the lowest eigenstates in
the B�

u symmetry subspace.
All DMRG methods have a truncation error which is

reduced by increasing the number m of density-matrix
eigenstates kept in the renormalization procedure [16].
To achieve a greater accuracy and to obtain error esti-
mates, I extrapolate DMRG results to the limit of van-
ishing discarded weight Pm. For eigenenergies, DMRG
errors vanish linearly with Pm, while for other quantities,
DMRG errors usually scale as �Pm�� with 0<� � 1. The
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TABLE I. Critical nearest-neighbor repulsion Vc�U�, single-
particle charge gap Ec at �U;Vc�, and transition type for several
values of U. Numbers in parenthesis are estimated errors.

U=t Vc�U�=t Ec=t Transition order

2 1.125 (25) 0 continuous
3 1.640 (10) 0 continuous
4 2.150 (10) 0.05 first order
5 2.665 (5) 0.11 first order
6 3.155 (5) 0.15 first order
8 4.141 (4) 0.45 first order

12 6.115 (5) 2.0 first order
40 20.041 (4) 29.3 first order
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FIG. 1. Ground-state double occupancy d versus V close to
the critical coupling Vc�U� for several U (in units of t).
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largest number of density-matrix eigenstates used in this
work ism � 1200, and truncation errors are negligible for
all results presented here. DMRG calculations have al-
ways been carried out for several sizesN in order to check
finite-size effects and, if necessary, results have been
extrapolated to the thermodynamic limit N ! 1. The
largest system size used in this work is N � 1024.

For V & U=2 the model (1) describes a Mott insulator.
[This phase is often called a spin-density-wave (SDW)
phase because antiferromagnetic spin correlations decay
algebraically in the ground state.] There is no broken
symmetry and the ground state is nondegenerate. The
charge gap Ec is finite but the spin gap Es vanishes in
the thermodynamic limit. In this Mott insulating phase
the lowest eigenstate in the B�

u symmetry sector always
contributes to the optical spectrum. Therefore, the differ-
ence between the B�

u and A	
g ground-state energies cor-

responds to the optical gap Eopt. For V * U=2 the system
is in a long-range ordered CDW phase with a doubly
degenerate ground state in the thermodynamic limit. In
this phase both charge and spin gaps are finite. The CDW
order parameter 0< jmej � 1 gives the amplitude of
the ground-state density modulation hn̂nli � 1	 ��1�lme.
Such a CDW breaks the charge-conjugation symmetry
and the spatial reflection symmetry. Thus, one of the two
degenerate ground states belongs to the A	

g symmetry
subspace and the other one to the B�

u subspace. Ob-
viously, this consideration shows that the low-energy
B�
u excitations in the Mott phase play an important role

in the Mott-CDW transition.
The transition from the CDW phase to the Mott phase

can be investigated with DMRG as done previously for
the CDW-metal transition in the Holstein model [18].
More precisely, I have investigated the lowest eigenstates
to determine the ground-state degeneracy and symmetry,
and I have calculated the electronic staggered suscepti-
bility to check if the ground state has long-range CDW
order. Some results for the critical line Vc�U� determined
with this approach are given in Table I. These results agree
quantitatively with recent quantum Monte Carlo (QMC)
simulations [10] and the Gaussian transition line in
Ref. [8], although the interpretation of this phase bound-
ary is completely different (see below). These values are
also in good agreement with strong-coupling perturba-
tion theory [6] down to U � 6t and the results of early
numerical simulations [4,5]. This confirms the accuracy
of the present approach, and I will not elaborate further
on the location of this boundary.

To determine the order of the transition on the critical
line Vc�U�, one can examine the derivatives of the
ground-state energy per site with respect to the interac-
tion parameters U and V. Using the Hellmann-Feynman
theorem, one shows that the derivatives are given (up to
known constants) by ground-state expectation values of
the double occupancy and nearest-neighbor density-
density operators, respectively. These expectation values
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can be calculated accurately with DMRG. Figure 1 shows
the average ground-state double occupancy

d �
1

N

X
l

hn̂nl"n̂nl#i (2)

versus V close to the critical coupling Vc�U�. For U �
40t, d jumps from almost zero to slightly less than 0:5 at
Vc and thus the transition is clearly first order, while it is
continuous for U � 2t. For U � 6t the derivative of d
with respect to V evolves into a � function at V � Vc as
the system size N increases. Therefore, d is discontinuous
at Vc�U� and the transition is also first order for U � 6t.
With this method I have found that the transition at Vc�U�
is first order from the strong-coupling limit (U;V � t)
down to at least U � 4t (Vc � 2:15t) and is continuous
from the weak-coupling limit (U;V � t) up to at least
U � 3:5t (Vc � 1:9t).

An investigation of the low-lying charge excitations in
the Mott insulating phase allows us to understand the
existence of a tricritical point and to determine its posi-
tion. Figure 2 shows the evolution of the charge gap Ec
and the optical gap Eopt for three different couplings U. I
have always found that the charge gap Ec varies continu-
ously and goes through a minimum at Vc�U� as V is
increased for fixed U. For weak coupling (U � 3t) the
gap vanishes smoothly on the critical line. For stronger
coupling (U � 4t) the slope of Ec with respect to V
becomes very large and is discontinuous at Vc. In this
236401-2
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regime the charge gap remains finite at the transition (see
Table I).

In a Mott insulator, elementary charge excitations can
be understood as spinless bosons in Hubbard bands.
Excited states in the B�

u subspace always consist of an
even number of such elementary excitations with zero
total charge [11,13,14]. DMRG calculations combined
with analytical methods [14,15] reveal their properties.
For V � 2t the low-energy B�

u excited states consist of
two independent elementary charge excitations, and the
optical gap equals the charge gap in the thermodynamic
limit. For V > 2t, however, the lowest B�

u excitations are
bound states starting at an energy Eopt <Ec (see Fig. 2).
Just above 2t they are excitons made of two elementary
charge excitations. Close to the critical line Vc�U� � U=2
they become finite-size ‘‘droplets’’ of the CDW phase (i.e.,
a bound state of several elementary charge excitations).
The excitation energy Eopt of the lowest CDW droplet
remains finite at the transition Vc�U� at least for U � 5
(see also Fig. 2). CDW droplet sizes increase sharply as V
approaches the critical coupling Vc�U� for fixed U and
reach a finite value �c at the critical line. This critical
droplet size �c diverges for U ! 1 but tends to 2 (cor-
responding to an exciton) if Vc approaches 2t.

Combining all results, one discerns two distinct re-
gimes in the Mott phase as the critical line Vc�U� is
approached. If Vc � 2t, the transition is continuous, the
B�
u excitations are made of free charge excitations and

become gapless at Vc. If Vc > 2t, the transition is first
order, the low-lying B�

u excitations are bound states and
remain gapped at Vc. Therefore, I believe that the tricriti-
cal point is precisely located at the intersection of the
V � 2t boundary with the quantum critical line Vc�U� �
U=2, i.e., at Ut � 3:7t, Vt � 2t.

Adapting Hirsch’s analysis [4], one can now qualita-
tively explain why the transition from the Mott to the
CDW phase changes from first order to continuous. If
Vc�U� > 2t, CDW droplets with sizes � � �c are ener-
getically favored when V becomes larger than Vc�U�, and
the system tunnels to the CDW phase by nucleation. On
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FIG. 2. Charge gap Ec (upper line) and optical gap Eopt

(lower line) versus V close to the critical coupling Vc�U� for
U=t � 40 (solid line), 6 (dashed line), and 2 (dot-dashed line).
For U � 2t, Eopt � Ec. Eopt is not shown in the CDW phase
(V > Vc).
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the critical line Vc�U� the creation energy Eopt and critical
size �c of the lowest CDW droplet diminishes with U.
At Vc � 2t, CDW droplets (with sizes � ! 2) become
instable and split into independent gapless elementary
charge excitations. For Vc�U� � 2t, it is then advanta-
geous to create many such excitations as V is increased
above Vc�U� and the transition becomes continuous.

In the field theory approach to the lattice model (1), the
limit between free and bound charge excitations corre-
sponds to a parameter K� � 1=2 for a half-filled system
[13,14]. Field-theoretical predictions for the low-energy
optical spectrum agree perfectly with dynamical DMRG
calculations [14,15]. Thus, the tricritical point probably
corresponds to K� � 1=2. In Ref. [10], it has also been
found that K� is close to 1=2 in this region.

Recently, Nakamura [8] has proposed that a narrow
region with long-range BOW order exists between the
CDW phase and the Mott phase at weak to intermediate
coupling. The BOW region vanishes at the tricritical
point, beyond which there is a direct first-order transition
from the Mott phase to the CDW phase. In this scenario
the critical line Vc�U� calculated above would correspond
to the BOW-CDW phase boundary for U <Ut. The exis-
tence of long-range BOW order in the critical region has
been confirmed by QMC simulations [10].

In a BOW phase the ground state is twofold degenerate
and both charge and spin gaps are finite. A long-range
ordered BOW corresponds to a finite staggered bond order

1

2

X
�

hĉc	l;�ĉcl	1;� 	 ĉc	l	1;�ĉcl;�i � p0 	 ��1�l�; (3)

with � � 0 in the thermodynamic limit. To distinguish
the BOW phase from the Mott phase, I have calculated the
spin gap Es and the bond order parameter � using DMRG.
After extrapolation to vanishing truncation errors Pm and
to the thermodynamic limit N ! 1, this approach gives
spin gaps with an accuracy of 10�3t or better and allows
one to detect a bond order alternation as small as j�j �
0:01. (It appears numerically that � either vanishes as
1=

����
N

p
or tends to a finite value with finite-size corrections

scaling as 1=N.) I have found a BOWground state only in
a very narrow region adjacent to the critical line Vc�U�
for intermediate coupling 4t � U � 6t. For U � 4t and
V � 2:14t, I have obtained � � 0:08 in quantitative
agreement with QMC simulations [10]. However, the
BOW phase extends to significantly stronger coupling
than reported in Ref. [10]. For instance, there is a BOW
ground state with � � 0:12 for U � 6t and V � 3:145t. I
have not observed any BOW ground state at weak cou-
pling (U � 3t), at strong coupling (U � 8t), and for V �
U=2. Actually, as BOW ground states are found only
within 0:02t of the critical line Vc�U�, I believe that the
BOW phase exists only on this critical line for intermedi-
ate coupling U starting from the tricritical point Ut �
3:7t up to an upper limit which is smaller than 8t. Field
theory [7] also suggests that a BOW phase can occur only
236401-3
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FIG. 3. Schematic ground-state phase diagram: the transition
is continuous at weak coupling (dashed line) and first order at
strong coupling (both solid lines). A circle marks the tricritical
point. The dot-dashed line is the boundary between free and
bound charge excitations in the Mott phase. The thick solid line
indicates the BOW phase and a square marks the transition
from a spin-liquid to a dimerized spin ground state on the
critical line.
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on the boundary between CDW and Mott phases in the
model (1). Even in the Hartree-Fock approximation, one
finds a BOW phase only on the critical line U � 2V
between a SDW phase and a CDW phase [19].

The occurrence of the BOW phase on the critical line
for U & 8t can be understood as the result of increasing
frustration in the spin degrees of freedom. On this critical
line, low-energy charge excitations are dispersionless and
thus ineffective in a degenerate CDW-Mott ground state.
A strong-coupling expansion up to 4th order in t=U shows
that the spin properties are determined by an effective
Heisenberg Hamiltonian with nearest-neighbor (J1) and
next-nearest-neighbor (J2) antiferromagnetic exchange
couplings [6]. This strong-coupling perturbation analysis
gives accurate results for the critical line Vc�U� (and thus
is expected to be valid) down toU � 6t. The ratio J2=J1 is
strongly enhanced by the nearest-neighbor repulsion V. It
is known [20,21] that the frustration due to the J2 cou-
pling causes a quantum phase transition from a ‘‘spin-
liquid’’ ground state for 4J2 & J1 to a dimerized spin
ground state for 4J2 * J1 in the Heisenberg model. On
the critical line Vc�U� of the extended Hubbard model,
this corresponds to the appearance of a BOW phase
(driven by the spin dimerization) for U & 7t, in agree-
ment with my DMRG results, if one uses the values of J1
and J2 given by the 4th-order perturbation expansion [6].
Away from the critical line [V < Vc�U�], one observes
only algebraically decreasing BOW correlations because
charge fluctuations, which are no longer dispersionless,
destroy the local spin moments and thus prevent any long-
range spin order.

Figure 3 shows the phase diagram found with DMRG.
This phase diagram disproves recent speculations about
an extended BOW phase from weak coupling up to the
tricritical point [8–10] but is compatible with the results
of most previous investigations of this problem (see
Refs. [4–7] and references therein).
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In summary, I have studied the ground-state phase dia-
gram of the one-dimensional half-filled extended Hub-
bard model for U;V > 0 using DMRG. I have shown
that the phase diagram is determined by three mecha-
nisms: First, the competition between the on-site (U)
and nearest-neighbor (V) repulsion is responsible for a
quantum critical transition from a Mott to a CDWground
state at V � U=2. Second, the competition between the
hopping term t and the nearest-neighbor repulsion V is
responsible for the transformation of free charge excita-
tions into bound states (CDW droplets) at V � 2t in the
Mott phase and thus changes the Mott-CDW transition
from continuous to first order. Third, a frustrating effec-
tive antiferromagnetic spin coupling leads to a dimerized
spin ground state (and thus to a BOW phase) on the Mott-
CDW critical line at intermediate coupling.
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