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Theory for the Optimal Control of Time-Averaged Quantities in Quantum Systems
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We present a variational theory for the optimal control of quantum systems with relaxation over a
finite time interval. In our approach, which is a nontrivial generalization of previous formulations and
which contains them as limiting cases, the optimal control field fulfills a high-order Euler-Lagrange
differential equation, which guarantees the uniqueness of the solution. We solve this equation numeri-
cally and also analytically for some limiting cases. The theory is applied to two-level quantum systems
with relaxation, for which we determine quantitatively how relaxation effects limit the control of
the system.
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tors or the population of electronic states at metallic
surfaces.

ẐZ�t�[6]. While the first term describes the dynamics of
the system under the external field, the functional density
The manipulation of quantum-mechanical systems by
using ultrashort time-dependent fields represents a chal-
lenging fundamental physical problem. In the past years,
a considerable amount of experimental and theoretical
work was concentrated on designing laser pulses having
optimal amplitude and modulation in order to control the
quantum dynamics in various systems such as atoms and
molecules [1], quantum dots [2], semiconductors [3],
superconducting devices [4], and Bose-Einstein conden-
sates [5].

Several theoretical studies, most of them using numeri-
cal optimization techniques, have shown that it is possible
to construct optimal external fields (e.g., laser pulses) to
drive a certain physical quantity, such as the population of
a given state, to reach a desired value at a given time
[6–8]. However, even for the simplest control problems
the obtained fields have a rather complex nature and
cannot be easily interpreted. Furthermore, since the opti-
mal field is usually obtained from a system of coupled
nonlinear integrodifferential equations, which are solved
numerically using iterative methods, the achievement of
the global extremum of the problem is not guaranteed.

Although the kind of control discussed above is rele-
vant for many purposes, a more detailed manipulation of
real systems may require the control of physical quanti-
ties over a finite time interval. The search for optimal
fields able to perform such control is a highly complex
problem for which no theoretical description has been
given so far.

In this Letter we present for the first time an analytical
theory for the control of simple quantum systems with
relaxation over a finite time interval. By using a varia-
tional approach we derive a high-order differential equa-
tion from which the optimal control fields are obtained.
We also determine the influence of relaxation, which
limits control, and we analyze the potential applications
to the manipulation of physical quantities, such as the
induced photocurrent through impurities in semiconduc-
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Our goal is to formulate a theory which permits one to
derive an explicit differential equation to be satisfied by
the optimal control field. Note that one can guess the form
of such equation from general physical arguments. Since
temporal coherence and memory effects are expected to
be important, one should search for a differential equa-
tion containing both the shape of the external field enve-
lope V�t� and the pulse area ��t� � �

R
t
t0
dt0V�t0�,� being

the dipole matrix element of the system. For the control of
quantities over a finite time interval �t0; t0 � T� two
boundary conditions ���t0�; ��t0 � T�� have to be fulfilled.
It means that a differential equation satisfied by ��t� must
be of at least second order. If one also imposes boundary
conditions for the field � _���t0�=�; _���t0 � T�=��, then the
differential equation for ��t� must be at least of fourth
order. We show below that under certain conditions a
fourth order differential equation for ��t� arises naturally
as an Euler-Lagrange (EL) equation.

We start by considering a quantum-mechanical system
being in contact with the environment and interacting
with an external field E�t� � V�t� cos�!t�. Here V�t� re-
fers to an arbitrary pulse shape and ! is the carrier
frequency. The evolution of such a system obeys the
quantum Liouville equation for the density matrix ��t�
with dissipative terms. The control of a time-averaged
dynamical quantity of the system requires the search for
the optimal shape V�t� of the external field on the time
interval �0; T�. Thus, we propose the following La-
grangian (throughout the Letter we use atomic units
�h � m � e � 1):

L �
Z T

0
A�t�

�
@
@t

� iẐZ�t�
�
��t�dt� �

Z T

0
L1dt: (1)

Here, � is a Lagrange multiplier and A�t� is a Lagrange
multiplier density. The first term in Eq. (1) ensures that
the density matrix satisfies the quantum Liouville
equation with the corresponding Liouville operator
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L1 explicitly includes the description of the optimal
control and is given by

L1��; V� � Lob��� � �V2�t� � �1

�
dV�t�
dt

�
2
; (2)

where � and �1 are Lagrange multipliers. Lob��� refers to
the physical quantity (objective) to be maximized during
the control time interval. The second term represents a
constraint on the total energy of the control field

2
Z T

0
E2�t�dt �

Z T

0
V2�t�dt �

Z T

0

_��2�t�

�2 dt � E0: (3)

The third term corresponds to a further constraint on the
properties of the pulse envelope. The requirement

Z T

0

�
dV�t�
dt

�
2
dt �

Z T

0

���2�t�

�2 dt 	 R; (4)

where R is a positive constant (maximal curvature).
Equation (4) excludes very narrow peaks or abrupt step-
like solutions, which cannot be achieved experimentally.
As we show below, the constraint (4) is necessary when
one needs to impose boundary conditions for the field
amplitude V�t�.

Assuming that the density matrix ��t� depends only on
��t� and on the time t, one obtains an explicit expression
for the functional L1 � L1��; _��; ���; t�. The corresponding
extremum condition �L1 � 0 yields the high-order EL
equation


 �1
d4�

dt4
� �

d2�

dt2


�2

2

@Lob���
@�

� 0: (5)

Here, the dependence on the pulse energy and curvature is
contained implicitly in the Lagrange multipliers � and
�1. In order to solve Eq. (5) one can assume the natu-
ral boundary conditions ��0� � _���0� � _���T� � 0, and
��T� � �T . The choice of the constant �T depends on
the problem. In general, the constants �T , R, and E0 can
be also the object of the optimization. Note that the above
formulated problem is highly nonlinear with respect to
the function ��t� and in most cases can be solved only
numerically.

Equation (5) is one of the main results of this Letter
and provides an explicit differential equation for the
control field. Note that this equation is applicable only
if � � ����t�; t�. In order to show that Eq. (5) can describe
optimal control in real physical situations, we apply our
theory to a two-level quantum system. This is character-
ized by the energy levels �1 and �2, a dipole matrix
element �, and the relaxation and dephasing constants
�1 and �2, respectively. The carrier frequency of the
control field is chosen to be the resonant frequency ! �
�2 
 �1. Assuming that the control field satisfies the
adiabatic criterion and using the rotating wave approxi-
mation we describe the dynamics of the density matrix
��t� by the equations
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� �V�t���22 
 �11� 
 i�2�12;

(6)

with ‘ � 1; 2. Note that �11 � �22 � 1 and �21 � ��
12.

Equations (6) are used for the description of different
physical processes, for instance, two-level atoms inter-
acting with an electromagnetic field, the response of
donor impurities in semiconductors to terahertz radiation
[3], or the excitation of the surface into image charge
states at noble metal surfaces [9]. Therefore, the initial
conditions are set as �11 � 1, �22 � �12 � �21 � 0.

Equations (6) are difficult to integrate, since
�ẐZ�t�; ẐZ�t0�� � 0 [with t; t0 2 �0; T�]. However, the com-
mutators �ẐZ�t�; ẐZ�t0�� become arbitrarily small under the
condition [10] ��������‘ T

2

V�t�

�
@V�t�
@t

�������t0

��������
 1; (7)

with ‘ � 1; 2. In this case the approximate solution for
�22�t� is

�22�t� � 2�2�t�F
1f1
 cosh�H� exp�
��1 � �2�t=2�

� ��1 � �2�t sinh�H�

� exp�
��1 � �2�t=2�H

1g; (8)

where H �
���������������������������������������������������
���1 
 �2�

2t2 
 16�2�t��
p

=2, and F �
�1�2t2 � 4�2�t�. Note that this approximate solution be-
comes exact when �1 � �2 � 0 or for a control field with
constant amplitude V�t� � V0. Equation (8) has the form
� � ����t�; t� which allows us to apply Eq. (5).

Now we construct the functional Lob��� � �22�t�=T,
so that the average occupation of the upper level n2 �
�1=T�

R
T
0 �22�t�dt is the quantity to be maximized. Note,

that n2 is proportional to the observed photocharge [3] in
terahertz experiments on semiconductors. The resonant
tunneling charge through an array of coupled quantum
dots is also proportional to n2 [11].

It is well known that the presence of decoherence
difficults optimal control [6]. From Eq. (8) one can
show that for a strong control field satisfying
�1;2 t=��t� 
 1 the instantaneous population �22�t� al-
ways lies under the curve �max

22 �t� � f1� exp�
��1 �
�2�t=2�g=2. Therefore, due to dissipative processes the
following inequality holds

n2 �
1

T

Z T

0
�22�t�dt	

1

2
�

1
 exp�
��1 ��2�T=2�
��1 ��2�T

(9)

which means that there is an absolute upper limit for the
optimal control of averaged occupations in two-level
systems with relaxation. Equation (9) exhibits two limit-
ing cases: For very weak relaxation (�1;2T
 1) the
populations can be fully inverted and remain in this state
so that the maximum possible value of the controlled
quantity is n2 ’ 1. In contrast, in the strong relaxation
limit �1;2 T ’ 1, there is no possibility to perform coherent
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control on the time scale T because the system is in the
saturation regime, so that the levels 1 and 2 become
approximately equally occupied and n2 ’ 1=2. It is not
possible to overcome the limit given by Eq. (9) within the
considered model. However, the optimal pulse that sat-
isfies Eq. (5) provides the highest possible value of n2 for a
given pulse energy, as we show below.

We have calculated the optimal V�t� from the numeri-
cal integration of Eq. (5) for different values of the
relaxation constants �1 and �2. We perform the determi-
nation of the optimal field for given values of E0 and R as
follows. Once we solve Eq. (5) for different values of the
Lagrange multipliers we determine the parametric depen-
dence E0 � E0��; �1� and R � R��; �1�. Thus, using an
interpolation procedure we obtain the searched optimal
pulse with the required properties E0 and R. In the same
way we determine the optimal boundary condition for
��T�. For simplicity we consider the control interval �0; 1�
and set � � 1.

In Fig. 1 we show the optimal field for a two-level
system without (�1;2 � 0) and with relaxation (�1 �
2�2 � 0:2) for the same value of the pulse energy E0.
Note that in both cases the pulse maximum occurs near
the beginning of the control interval. This leads to a rapid
increase of the population �22�t� and therefore to a maxi-
mization of n2. For the case �1;2 � 0 the pulse vanishes
when the population inversion has been achieved, whereas
for �1;2 � 0 the optimal pulse is broader [��T� > �=2].
Using Eq. (8) one can estimate that in the presence of an
appropriate external field �22�t� can achieve a minimal
decay rate ��1 � �2�=2 � 3�1=4 which is smaller than
the free decay of the system with rate �1. Therefore
relaxation effects can be partially compensated by a
longer application of the field during the control interval.
In the inset of Fig. 1 we show the corresponding dynamics
of the population �22�t� for both cases. As mentioned
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FIG. 1. Optimal control field which maximizes the time-
averaged occupation n2 in a two-level system. Dashed line:
�1;2 � 0. The pulse energy is E0 � 4:6 and the pulse curvature
R � 182:2. The solid line shows the optimal pulse for �1 �
2�2 � 0:2 with the same energy and curvature R � 134:32.
Inset: Dynamics of the instantaneous population �22�t� for
�1;2 � 0 system (dashed line) and with relaxation [solid line
using Eq. (8), thin solid line: numerical solution of the
Liouville Eq. (6)].
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before, Eq. (8) is exact for �1;2 � 0. However, for
�1;2 � 0 it also agrees well with the numerical solution
of the Liouville equation, indicating that V�t� fulfills the
condition (7) on the control interval.

The optimal pulses obtained for the system with re-
laxation considerably improve the value of the average
occupation n2 with respect to other pulse shapes such as
Gaussian or rectangular. In Fig. 2 we show the behavior of
the population �22�t� under the action of the optimal field,
the best possible sine square shaped pulse, and the best
possible ‘‘smooth rectangular’’ pulse [12] for the same
values of E0 and R. For the parameters used in Fig. 2 the
optimal pulse yields an improvement of about 20% with
respect to the best sine square pulse and of the best
smooth rectangular pulse. Note that the magnitude of
these improvements indeed depends on the dimensionless
parameter �1T as well as on the values of E0 and R.

In order to visualize the physics contained in the con-
trol fields of Fig. 1 one can simplify the general fourth
order differential Eq. (5) and reduce it to a second order
one which can be integrated analytically in some cases.
For this purpose, we eliminate the constraint on the
derivative of the field envelope [Eq. (4)]. Thus, the
Lagrangian density L1 for the optimal control now has
the form

L1 � �22�t�=T � � _��2�t�=�2: (10)

For �1;2T 
 1 one can neglect decoherence within the
control interval and Eq. (8) becomes simply �22�t� �
sin2���t��. Therefore, the corresponding EL equation is
given by

2� ����t� 
�2 sin�2��t��=T � 0: (11)

The second order differential Eq. (11) requires only two
boundary conditions, for which we choose ��0� � 0 and
��T� � �=2 . Note that this automatically leads to the
unphysical initial condition V�0� � 0. However, Eq. (11)
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FIG. 2. Time evolution of the instantaneous population �22�t�
under the action of the optimal field (solid line), the best
‘‘smooth rectangular’’ pulse (dashed line), and the best sine
square pulse (dotted line) for the same values of E0 � 4:17 and
R � 136:4. �1 � 2�2 � 0:1. Inset: illustration of the three
pulse shapes.
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FIG. 3. Optimal control field obtained from the Lagrangian
density of Eq. (10). Dashed line: �1;2 � 0 [analytical solution,
Eq. (12)]. The pulse energy is E0 � 4:8. Solid line: optimal field
for �1 � 2�2 � 0:2 with the same pulse energy (obtained
numerically). Inset: Dynamics of the instantaneous population
�22�t� for �1;2 � 0 (dashed line) and with relaxation [thick
solid line using Eq. (8), thin solid line: numerical solution of
the Liouville Eq. (6)].
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has the advantage that it can be solved analytically. The
resulting field envelope is given by

V�t� � V�0�dn��V�0�t; C�; (12)

where dn is the Jacobian elliptic function, and C �

��TV2�0��
1 is a constant of integration. Using the
constraint on the pulse energy [Eq. (3)] we determine
the coefficient �.

In Fig. 3 we plot the optimal control field V�t� corre-
sponding to the Lagrangian density L1 [Eq. (10)] for a
two-level system with and without relaxation. In both
cases the field has its maximum value at t � 0 and ex-
hibits a monotonic decay. As in the case of the solutions
of the fourth order Eq. (5), the control field is broader for
�1;2 � 0 in order to compensate for the decay of the
exited state. In the inset of Fig. 3 we plot the time
evolution of the population �22�t�.

From the comparison of the overall behavior of �22�t�
in Figs. 1 and 3 one can conclude that the essential physics
of the optimal control is already contained in the
Lagrangian density L1 [Eq. (10)]. The boundary condi-
tions V�0� � V�T� � 0 dramatically change the shape of
the optimal fields, but they do not affect significantly the
dynamics of the optimally controlled system.

The theory presented in this Letter is more general than
optimal control theory at a given time and contains it as a
limiting case. For instance, for the problem of maximi-
zation of �22�t� at time T1 the Lagrangian density
[Eq. (10)] reduces to

L1 � �22�t���T1 
 t� � � _��2�t�=�2: (13)

In this case the corresponding differential equation can
also be integrated analytically for �1;2 � 0 [10].

Finally, we can use Eq. (9) to determine the maximal
possible lifetime for an image state at a Cu(111) surface
which can be achieved by pulse shaping. According to
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Hertel et al. [9], those states are characterized by �1 �
5� 1013 s
1 and �2 � �1=2. Thus, our theory predicts in
that case an effective decay constant �eff � ��1 � �2�=
2 � 3:75� 1013 s
1 if the system is excited by the ap-
propriate pulse.

In summary, we presented a theory for the description
of optimal control of time-averaged quantities in quan-
tum systems with relaxation, which allows one, in con-
trast to previous approaches, to derive an explicit
differential equation for the optimal control field. We
demonstrated that due to relaxation and dephasing there
is an absolute upper bound for optimal control. However,
we have shown that it is still possible to design an optimal
shape producing the highest achievable average occupa-
tion within the constraint of pulse energy (and eventually
pulse curvature). The optimal fields arising from our
approach yield a considerable improvement of the con-
trolled quantity with respect to rectangular or Gaussian
pulses of the same energy and curvature. Our approach
guarantees the unique optimal solution and can be used
for further investigations such as, for instance, the con-
trol of the dynamics of multilevel systems by applying n
resonant external fields. In this case the corresponding
pulse areas �n�t� should satisfy a system of n coupled EL
equations.
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