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CPT Violation ImpliesViolation of Lorentz Invariance
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A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the
other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate
CPT by having different particle and antiparticle masses must be nonlocal.
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Poincaré transformations in which coordinates are trans-
formed according to x! �
1�x
 a�, where � is a

which � functions need not be considered. Thus we have
demonstrated the main result of this paper. If CPT
A quantum field theory is Lorentz covariant in cone [1]
if vacuum matrix elements of unordered products of fields
(Wightman functions) are covariant. (What we call
‘‘functions’’ are distributions in a space of ‘‘generalized
functions.’’) We assume in-cone Lorentz covariance (ac-
tually Poincaré covariance) in this paper. A quantum field
theory is covariant out of cone if vacuum matrix elements
of time-ordered products (� functions) are covariant. To
calculate the S matrix we need � functions, or similar
functions, such as retarded or advanced products (r func-
tions or a functions). We require covariance of a quantum
field theory both in and out of cone as the condition for
Lorentz invariance of the theory; thus both theWightman
functions and the � (or r or a) functions must be covariant
for the theory to be Lorentz invariant.

Jost proved the fundamental theorem [2] that weak
local commutativity at Jost points is necessary and suffi-
cient for CPT symmetry. Jost points are spacetime points
in which all convex combinations of the successive differ-
ences are spacelike, i.e., if the Wightman function is

W�n��x1; x2; . . . ; xn� � h0j��x1���x2� � � ���xn�j0i; (1)

a Jost point is an ordered set of fxig such that all sums,P
i ci�xi 
 xi�1�, ci � 0,

P
i ci > 0, are spacelike. Weak

local commutativity states that

W�n��x1; x2; . . . ; xn� � W�n��xn; xn
1; . . . ; x1�: (2)

Clearly local commutativity implies weak local
commutativity.

We will show that violation of CPT invariance in any
Wightman function [3] implies noncovariance of the
related � (or r or a) function, and thus implies a violation
of Lorentz invariance of the theory. We give our explicit
discussion in terms of a scalar theory; however analogous
arguments apply for any spin.

Kostelecký and collaborators have studied CPT- and
Lorentz-violating theories systematically. Among their
papers are [4,5]. The proceedings of a meeting on CPT
and Lorentz symmetry are in [6]. Kostelecký et al. have
emphasized the difference between observer (sometimes
called ‘‘passive’’ in theories without Lorentz violation)
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Lorentz transformation and a is a spacetime translation,
and particle (sometimes called ‘‘active’’ in theories with-
out Lorentz violation) Poincaré transformations in which
fields are transformed according to

U�a;����x�U�a;��y � ���x� a�;

U�a;��j0i � j0i:
(3)

The analogous distinction exists for CPT symmetry.
Unless stated otherwise, we always consider observer
symmetries in this paper. If CPT is violated for any �
function, which implies that weak local commutativity is
violated for that function, then the corresponding � func-
tion is not Lorentz covariant (not Lorentz invariant for
the scalar case we discuss explicitly), and the theory is not
Lorentz invariant. A general � function is given in terms
of Wightman functions as

��n��x1; x2; . . . ; xn�

�
X
P

��x0P1
; x0P2

; . . . ; x0Pn�W
�n��xP1

; xP2
; . . . ; xPn�;

(4)

where � enforces x0P1
� x0P2

� � � � � x0Pn . In order for the �
function to be Lorentz covariant, Lorentz transforma-
tions that reverse the time order of points while leaving
the Wightman function invariant must not change the �
function. This requires the equality of Wightman func-
tions of permuted field orders when the relative distances
are spacelike. If the functions are at a Jost point and the
fxig are such that all the successive time differences are
positive, then there is an observer Lorentz transformation
that leaves the Wightman functions invariant, but makes
all the successive time differences negative. Invariance of
the � function requires that the original Wightman func-
tion and the one with the fields in completely reversed
order have the same value. This is precisely the condition
of weak local commutativity which is necessary and
sufficient for CPT invariance of the corresponding ma-
trix element. Thus if CPT invariance does not hold for
this matrix element, then the � function is not Lorentz
invariant and the theory is not Lorentz invariant. This
argument does not apply to a noninteracting theory for
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invariance is violated in an interacting quantum field
theory, then that theory also violates Lorentz invariance.

On the other hand, weak local commutativity insures
only one of the equalities among Wightman functions
of fields in permuted orders that are necessary for out-
of-cone Lorentz covariance of the � functions, so CPT
invariance is not sufficient for out-of-cone Lorentz
invariance.

We remark that weak local commutativity of
Wightman functions implies weak local commutativity
of truncated Wightman functions. We see no reason why
violations of weak local commutativity cannot occur
independently in truncated Wightman functions of differ-
ent order. Even if the two-point Wightman function obeys
weak local commutativity (which is the same condition
as local commutativity for this case) which implies equal
masses for the particle and antiparticle, weak local com-
mutativity can be violated for the higher Wightman func-
tions, and thus CPT can be violated in scattering and
other physical processes even when the masses of particle
and antiparticle are equal.

These results are relevant to theories in which the
effective four-dimensional theory comes from a higher
dimensional theory: if the effective four-dimensional
theory violates CPT symmetry it also violates Lorentz
invariance.

We consider the case in which the particle and anti-
particle have different masses [7–9] specifically. We dis-
agree with the assertion [8,9] that such a theory can be
Lorentz covariant. We discuss the case of a charged scalar
field; the results for other spin fields are qualitatively the
same. We use covariant normalization for the annihila-
tion and creation operators. We take the (Bose) commu-
tation relations for the asymptotic (in or out) particles and
antiparticles (we drop the labels in or out to simplify
notation) for any observer to be

�a�p�; ay�p0�� � 2E�p���p
 p0�; E�p� �
������������������
p2 �m2

q
;

(5)

�b�p�; by�p0�� � 2 �EE�p���p
 p0�; �EE�p� �
������������������
p2 � �mm2

q
:

(6)

For m2 � �mm2 these commutation relations violate C
and CPT, but not necessarily P and T. These relations
do not seem to occur in the general analysis of Kostelecký
et al. [4–6]; we believe this is because Kostelecký et al.
assume observer Lorentz covariance both in and out of
cone, while we assume only in-cone observer Lorentz
covariance.

We choose the Hamiltonian for this case to be

H �
Z �

d3p
2E�p�

E�p�ay�p�a�p� �
d3p

2 �EE�p�
�EE�p�by�p�b�p�

�
:

(7)

The usual commutation relations of the Lie algebra of the
Poincaré group,
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�P�; P�� � 0; �M��; P�� � i����P� 
 ���P��; (8)

�M��;M !� � i���!M� 
 �� M�! � �� M�!


 ��!M� � (9)

are satisfied by the replacements

P� ! p�; M�� ! i
�
p�

@
@p�


 p�
@
@p�

	
: (10)

Carrying this over to the field operators gives Hermitian
operators for the generators of the Lie algebra,

P� �
Z �

d3p
2E�p�

ay�p�p�a�p� �
d3p

2 �EE�p�
by�p� �pp�b�p�

�
;

(11)

M�� �
Z �

d3p
2E�p�

ay�p�i
�
p�

@
@p�


 p�
@
@p�

	
a�p�

�
d3p

2 �EE�p�
by�p�i

�
�pp�

@
@ �pp�


 �pp�
@
@ �pp�

	
b�p�

�
:

(12)

Thus the free fields carry a representation of the Poincaré
algebra. In particular, the Hamiltonian, H � P0, gener-
ates time translations. As we will show below, the prob-
lem with Lorentz invariance only occurs out of cone and
shows up explicitly when there are interactions.

We construct the spacetime dependence of the fields by
using the generators of translations,

eiP�xa�p�e
iP�x � e
ip�xa�p�: (13)

Thus the x-space fields are

��x� �
1

�2$�3=2

Z �
d3p
2E�p�

a�p�e
ip�x

�
d3p

2 �EE�p�
by�p�ei �pp�x

�
; (14)

�y�x� �
1

�2$�3=2

Z �
d3p

2 �EE�p�
b�p�e
i �pp�x

�
d3p
2E�p�

ay�p�eip�x
�
; (15)

where p0 � E�p� for terms with a and ay, and �pp0 � �EE�p�
for terms with b and by.

In this case the only truncated vacuum matrix elements
are the two-point functions, which are covariant (invari-
ant for this scalar case),

h0j��x��y�y�j0i � �����x
 y;m2�

�
1

�2$�3

Z d3p
2E�p�

e
ip�x; (16)

h0j�y�x���y�j0i � �����x
 y; �mm2�

�
1

�2$�3

Z d3p

2 �EE�p�
e
i �pp�x: (17)

The field is local in sense (iii) defined below if the
231602-2
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commutator vanishes at a spacelike separation,

���x�; �y�y�� � 0; �x
 y�2 < 0: (18)

For this to hold the vacuum matrix element,
������r;m2� 
 �����
r; �mm2��, r� � x� 
 y�, must van-
ish at r2 < 0. The asymptotic limit for

���������

r2

p
! 1 is

h0j���x�; �y�y��j0i ! �
r2�
3=4�e
m
������

r2

p


 e
 �mm
������

r2

p

�;

(19)
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this requires m2 � �mm2.
Under Poincaré transformations the two-point � func-

tion, which is the Feynman propagator,

h0jT���x��y�y��j0i � ��x0 
 y0�h0j��x��y�y�j0i

� ��y0 
 x0�h0j�y�y���x�j0i

(20)

becomes
h0jT����
1�x
 a���y��
1�y
a���j0i � ����
1�x
 y��0�h0j��x��y�y�j0i�����
1�y
 x��0�h0j�y�y���x�j0i; (21)

where we used the translation and Lorentz invariance

properties of �����x
 y;m2� and of �����y
 x; �mm2�. If
x
 y is spacelike a Lorentz transformation can transform
a vector with x0 > y0 into one with y0 > x0, which
changes the value of the propagator from �����x
 y;m2�
to �����y
 x; �mm2�. Thus the propagator is not covariant
unless the vacuum matrix element of the commutator,
�����x
 y;m2� 
 �����y
 x; �mm2�, vanishes at spacelike
separation and, as shown above, this happens only if
m2 � �mm2 [10].

Straightforward calculation of the � function in mo-
mentum space gives

�2i�E�p�
p0
 i'�E�p��
1��2i� �EE�p��p0
 i'� �EE�p��
1:

(22)

For m2� �mm2 this reduces to the invariant form i=
�p2
m2� i'� as it should.

To illustrate the effect of the noninvariance of this
propagator as viewed by different observers, assume the
propagator mediates a scalar s-channel process k1 � k2 !
k01 � k02, k

2
1 � k021 � m2

1, k
2
2 � k022 � m2

2. If the propagator
were Lorentz invariant an observer who saw the total
momentum to be zero (call this the center-of-mass frame)
would find the same result as an observer who saw the
momentum of one of the particles, say, particle 2 to be
zero (call this the lab frame). (Since the propagator in
momentum space is just the Fourier transform of the
propagator in position space, we know already that these
results will not agree. The purpose of the following
calculation is to show that in the high-energy limit the
results disagree qualitatively.) In the center-of-mass

frame, p � 0, s � �
������������������
k2 �m2

1

q
�

������������������
k2 �m2

2

q
�2, E�p� � m,

�EE�p� � �mm. The propagator is

propagatorjcm �
m2 � �mm2 � � �mm 
m�

���
s

p

2im �mm�m

���
s

p
�� �mm �

���
s

p
�
: (23)

In the lab frame, p � k1, s � m2
1 �m2

2 � 2m2

�����������������
k21 �m2

1

q
,

E�p� �
������������������
k2
1 �m2

q
, �EE�p� � m2. The propagator is given

by Eq. (22), with

E�p� �

����������������������������������������������������������������������������������������
s2 
 2�m2

1 �m2
2�s� �m2

1 
m2
2�

2 � 4m2
2m

2
q

2m2
;

(24)
�EE�p� is similar, but with m replaced by �mm, and p0 �
�s�m2

2 
m2
1�=2m2. In the limit s! 1,

propagatorjcm !
i� �mm 
m�
2m �mm

���
s

p ; (25)

propagatorjlab !
i
s
: (26)

Thus the large-s behaviors of the amplitude differ quali-
tatively in the two different frames. If m � �mm both
propagators go to i=s for large s. For a resonant amplitude
with s near m2 or �mm2, this noninvariance of the propa-
gator will lead to noninvariance of the scattering cross
section.

Next we discuss the question of nonlocality when the
masses of the particle and antiparticle differ.

Nonlocal quantum field theories were discussed exten-
sively in the 1950’s as a possible way to remove the
ultraviolet divergences of quantum field theories [11–
15]. The nonlocality was always introduced in the inter-
action terms, not in the quadratic terms that correspond
to the free Hamiltonian. Nonlocal theories failed as a
mechanism to solve the divergence problem. Surprisingly,
some of these authors derived conditions under which the
acausality due to nonlocality is restricted.

The property of locality can have three different
meanings for a quantum field theory: (i) the fields enter
terms in the Hamiltonian and the Lagrangian at the
same spacetime point, (ii) the observables commute at
spacelike separation, and (iii) the fields commute (for
integer spin fields) or anticommute (for odd half-integer
spin fields) at spacelike separation. Theories in which
(i) fails can still obey (ii) and (iii), for example, quantum
electrodynamics in the Coulomb gauge. Theories in
which (iii) fails can still obey (i) and (ii), for example,
parastatistics theories of order greater than 1. We have
already shown above that the theory in which CPT is
violated due to having different masses for the particles
and antiparticles is nonlocal in sense (iii). We expect that
such a theory will be nonlocal in sense (ii), but we do not
show this here. Next we do show that such a theory is
nonlocal in sense (i).

We discuss the case of a charged scalar field explicitly;
the results for other spin fields are qualitatively the same.
We use the annihilation and creation operators given in
231602-3
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Eqs. (5) and (6). We calculate the free Hamiltonian for
such fields in two ways. First, we calculate the
Hamiltonian assuming only first derivatives of the fields
enter and, secondly, we do the calculation allowing
higher derivatives.

With only first order derivatives, we find

a�p� �
4Ep �EEp

�Ep � �EEp�
2

�
�p �

Ep 
 �EEp
2 �EEp

��
 �EEp;p�

� exp�i�Ep � �EEp�x
0�

�
; (27)

b� �pp� � 

4Ep �EEp

�Ep � �EEp�
2

�
��
 �EEp;p� 


Ep 
 �EEp
2Ep

�p

� exp�
 i�Ep � �EEp�x
0�

�
: (28)
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Here we used the definition

�p �
i

�2$�3=2

Z
d3xeip�x@x0

$
��x�: (29)

The explicit nonlocal form of the Hamiltonian,

H �
1

2

Z
d3p�ay�p�a�p� � by� �pp�b� �pp�� (30)

expressed in terms of ��x� and �y�x� follows from
Eqs. (27)–(29); it is nonlocal in space, complicated, and
not informative.

Allowing higher derivatives, however, leads to a rela-
tively simple form for the Hamiltonian with the ����

function as the kernel that gives the nonlocality. The
result is
H �
2i

�2$�3�m2 
 �mm2�2


Z
d3xd3x0

@�����x
 x0;m2�

@�x0 
 x00�

@
$

@x0
@
$

@x00
�@x � @

x � �mm2��@x0 � @
x0 � �mm2��y�x���x0�

�
Z
d3xd3x0

@�����x
 x0; �mm2�

@�x0 
 x00�

@
$

@x0
@
$

@x00
�@x � @

x �m2��@x0 � @
x0 �m2���x��y�x0�

�
: (31)
The apparent singularity in Eq. (31) due to the factor
�m2 
 �mm2�
2 is removed by the Klein-Gordon operators
and the Klein-Gordon scalar products in this equation.

To summarize, we have demonstrated that CPT invari-
ance is necessary, but not sufficient, for Lorentz invari-
ance of an interacting quantum field theory. We noted that
violations of CPT can occur independently in different
truncated Wightman functions.

We also showed that if one explicitly chooses different
masses for particles and antiparticles the theory must be
nonlocal in terms of the x-space fields associated with the
particles. In that case the propagator is not covariant, and,
further, the lack of covariance leads to qualitatively dif-
ferent behaviors of the propagator at large s in different
frames of reference.
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