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Coalescing binary neutron stars (NS) are expected to be an important source of gravitational waves
(GW) detectable by laser interferometers. We present here a simple method for determining the
compactness ratio M/R of NS based on the observed deviation of the GW energy spectrum from
point-mass behavior at the end of inspiral. Our method is based on the properties of quasiequilibrium
binary NS sequences and does not require the computation of the full GW signal /(r). Combined with
the measurement of the NS masses during inspiral, the determination of M/R will allow very strong
constraints to be placed on the equation of state of dense nuclear matter.
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Coalescing compact binaries containing two neutron
stars (NS) are among the most important sources of
gravitational waves (GW) for LIGO [1], VIRGO [2], and
other laser interferometers. Should the inspiral of such a
binary be detected, the frequency evolution of the GW
signal will immediately yield the system’s “‘chirp mass”
My, = p3SM?5, where u and M are the reduced and
total mass of the binary, respectively. Higher-order post-
Newtonian effects on the phase evolution of the signal
also allow for the determination of the reduced mass wu,
and thus the individual masses M| and M, of the two NS
[3]. The determination of the NS radii in addition to their
masses would yield important information about the
equation of state (EOS) at nuclear densities, and could
even indicate the presence of more exotic phases, such as
strange quark matter instead of ordinary nuclear matter
[4]. The GW signal of a coalescing binary could yield such
information, but this is limited in two different ways.
During the slow inspiral phase at large separations, i.e.,
low frequencies (f < 1 kHz), the stars behave like point
masses, and finite-size effects are not expected to leave
any signature in the GW signal [3,5,6]. During the final
hydrodynamic merger, characteristic frequencies of GW
emission could yield important information about the
fluid EOS [7-9], but these frequencies are expected to
lie well above the photon shot noise limit of current
interferometers (f = 1 kHz). Thus, it is only during the
last few orbits of the inspiral, just prior to merger, that we
can hope to see the imprint of the NS radii on a mea-
surable GW signal (with f < 1 kHz).

Several groups have studied this terminal phase of
inspiral by constructing quasiequilibrium sequences of
close NS binaries in the conformal flatness approximation
of general relativity (GR) [10—13]. In this approximation,
it is assumed that the binary system evolves along a
sequence of appropriately constructed equilibrium states
with decreasing binary separation as energy is radiated
away in GW. From the binary equilibrium energy curve
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E4(r), which gives the total system energy as a function
of binary separation r, and the GW luminosity Lgw, one
can derive the radial infall rate as v, = Lgw(dEq,/dr)~".
With v, = dr/dt known, this provides the time evolution
along the equilibrium sequence and the GW signal A(r).
This approach should remain accurate as long as the
radial infall time scale r/v, is longer than the dynamical
time scale of the system, i.e., until the point where dy-
namical instability sets in, and the two stars plunge
inward rapidly and merge.

Unfortunately, calculating the correct GW luminosity
for a given matter configuration in GR is an extremely
difficult task. Different approaches have required either
time integration of the full nonlinear equations of GR
[14] or the solution of a complicated wave equation for
terms representing the spherical harmonic expansion of
the GW metric perturbation [15]. The great complexity
of these approaches is in stark contrast with the simplicity
of the quasiequilibrium approximation. However, we
point out here that the GW energy spectrum dEgyw/df
can be calculated directly and very simply from the
equilibrium energy curve, independent of any knowledge
about the GW luminosity. Indeed, by definition of the
quasiequilibrium approximation, the energy decrease
—dE,, between two neighboring binary configurations
along the sequence is equal to the energy dEgyw radiated
away as the wave frequency sweeps up by df, where the
GW frequency is twice the orbital frequency, f = 2f .
Thus, one should simply compute the total energy E., as a
function of frequency f along the equilibrium sequence,
and the GW energy spectrum is then given by the deriva-
tive dEgw/df = —dE./df. As a trivial example,
consider the inspiral of two point masses in
the Newtonian limit, where we have E ., = —r land f =
r=3/2_ 1t follows that E., « —f*3 and thus dEgy/df
£71/3, a well-known result. In addition to the assumptions
underlying the quasiequilibrium approximation, the va-
lidity of this simple approach relies on the additional
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assumption that the GW emission during the later merger
phase has no effect on the energy spectrum at lower
frequencies. Indeed, this has been demonstrated in nu-
merical hydrodynamic calculations of binary mergers
[7,8], which show a clear separation between the inspiral
and merger components of the emission in frequency
space.

We have investigated the properties of the GWemission
during the final phase of binary NS inspiral using new,
highly accurate equilibrium sequences calculated with
the LORENE code [16]. This code solves the five coupled,
nonlinear, elliptic equations of the conformally flat ap-
proximation [10-13], using a multidomain spectral
method [17,18]. This approach has already been used
successfully in various astrophysical applications
[13,19,20]. Typically, the computed fields satisfy the con-
straints of full GR to within ~1% [21], and LORENE
configurations satisfy the virial theorem to within one
part in 10°. The equilibrium sequences presented here are
the natural extension of the work already published in
[13,22]. They will be discussed in more detail in [23].
Here we show only the variation of the ADM (Arnowitt-
Deser-Misner) mass of the system (total binary mass-
energy M = c*ZEeq) and the GW frequency (twice the
orbital frequency), which are sufficient for our purposes
to determine the GW energy spectrum.

The equilibrium configurations have been calculated
for irrotational binaries, i.e., assuming that the fluid has
zero vorticity in the inertial frame. Indeed, the NS should
be spinning slowly at large separations and the viscosity
of NS matter is too small for tidal spin-up to become
significant on the coalescence time scale [5,24]. Based on
the current set of well-measured NS masses in relativistic
binary radio pulsars, it is expected that all NS in coalesc-
ing binaries will have masses M =~ 1.35M [25]. Hence,
for simplicity, we consider only equal-mass binaries
where M| = M, = 1.35M,. Also for simplicity, we
model the NS EOS with a simple polytropic form P =
Kp", where P is the pressure and p the rest-mass density.
The constant K represents the overall compressibility of
the matter and largely sets the value of the stellar radius
for a given mass, while the adiabatic exponent I' measures
the stiffness of the EOS and the central concentration of
the NS interior. Based on our experience with hydrody-
namic calculations [8], we expect that the GW energy
spectrum just prior to merger is determined primarily by
the NS radius with relatively little sensitivity to I'. For
this reason, in this initial study, we allow the stellar
radius R to vary for different NS models, but we set
I' = 2 for all models, as this value fits well most pub-
lished NS EOS (see, e.g., [26] and references therein).
Specifically, we consider NS models with compactness
ratios M/R = 0.12, 0.14, 0.16, and 0.18 (setting G =
¢ = 1), where M is the ADM (gravitational) mass mea-
sured by an observer at infinity for a single isolated NS,
and R is the circumferential radius of the NS. For M =
1.35M, the corresponding radii are R = 16.6, 14.2, 12.4,
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and 11.1 km, respectively, spanning the range of values
for NS radii calculated from various physical EOS. Note,
however, that our results are unchanged under the rescal-
ing given by R’ = kR, M' = kM, f' = f/k, for any con-
stant K.

For each NS model, about 12 binary equilibrium con-
figurations are computed with decreasing separations,
until a cusp develops on the NS surface. Equilibrium
configurations for smaller separations do not exist. To
each sequence we fit a curve of the form

M(f) = 2.TMo = knf> + kif + kaf? M

to represent the variation of total mass energy as a func-
tion of GW frequency. The first term gives the total
gravitational mass of the system at infinite separation,
while the second term represents the Newtonian point-
mass behavior, with ky = 2743 723G*3 M3/ = 4.056 X
107*M, Hz /3. The term « f was introduced heuristi-
cally to represent the lowest-order post-Newtonian and
finite-size corrections to the point-mass behavior at in-
termediate frequencies. The term « f2 represents the tidal
interaction energy, which causes the equilibrium energy
curve to flatten at high frequencies. Our best (least-
squares) fit values of k; and k, for each sequence are
listed in Table I, and the results are illustrated in Fig. 1.
The asterisks show the data points along each sequence,
with a typical error between the data points and the fit of
SM ~10"*M,. We find in all cases that k, is positive,
as we would expect: tidal deformations and relativistic
gravitational effects increase the equilibrium energy
[27,28]. We note that none of the equilibrium curves shows
evidence of an energy minimum, which would have im-
plied the onset of dynamical instability [6,22,27,29].
Computing the GW energy spectrum for each model
now requires only differentiating the fitted curves with
respect to frequency. The results are shown in Fig. 2. In
each case, we see a characteristic frequency range where
the spectrum plunges rapidly below the extrapolation of
the low-frequency result. This corresponds to the flatten-
ing of the energy curves in response to the growing tidal
interaction and post-Newtonian (PN) effects. Also shown
is the energy spectrum of a 3PN, irrotational, point-mass
binary, computed according to the results found in
Ref. [30], which closely tracks our most compact model,
indicating that the differences we see in the energy spec-
tra result from finite-size effects associated with the NS
radius. To quantify the deviations from the Newtonian
case, we define a set of break frequencies, at which the
energy spectrum has dropped by some factor below the
point-mass result. The values we find for fy, f>5, and fs,
where dEgw/df has dropped by 10%, 25%, and 50%,
respectively, are listed in the last three columns of Table L
We see that all these characteristic frequencies lie within
the frequency range accessible by LIGO-type detectors,
with perhaps the exception of f5, for the more compact
sequences. Note that the calculation of f5, values requires
extrapolating the equilibrium energy curves slightly
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TABLE 1. Properties of the quasiequilibrium sequences. Here M/R (with G = ¢ = 1) is the
compactness of an isolated NS seen by an observer at infinity, R is the circumferential radius
for an ADM mass of M = 1.35Mg, f. is the GW frequency at the final point of each sequence
(cusp), k; and k, are the best fit parameters in Eq. (1), and f}y, f25, and fs, are the break
frequencies at which the GW energy spectrum has dropped, respectively, by 10%, 25%, and
50% below the point-mass energy spectrum.

M/R R (km) f. (Hz) ky ky fio Hz)  fos (Hz) f50 (Hz)
0.12 16.6 641 —4.939 X 107 1.290 X 1078 342 518 764
0.14 14.2 807 —3.363 X 107° 9.244 X 107° 383 612 931
0.16 12.4 1002 —1.806 X 107 6.490 X 10~° 418 720 1137
0.18 11.1 1187  —5.834 X 1077 4.835%x 107 431 810 1331

beyond the last equilibrium model (where a cusp devel-
ops), and may therefore be less reliable. However, we find
that f5o has a particularly steep, quasilinear dependence
on the NS compactness, given by fso=[10*(M/R) —
460] Hz within the range of NS radii we considered. For
comparison, f,s values can be determined safely within
the quasiequilibrium approximation, and the sensitivity
on compactness is only slightly reduced, with f,5 =
[5000(M/R) — 85] Hz.

frequencies [31] and greater ease of discrimination be-
tween different EOS at the higher frequencies. In addi-
tion, the quasiequilibrium approximation is expected to
be most accurate at lower frequencies, where the inspiral
rate 1s slower. However, we doubt that this could become a
major issue: if we adopt, for simplicity, the point-
mass formula for the GW luminosity, and compute the
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T — FIG. 2 (color online). Energy spectrum dEgw/df of GW
f(Hz) emission emitted along each of the four sequences of Fig. 1
in the quasiequilibrium approximation. Also shown is an irro-
FIG. 1. ADM mass (total mass energy) of a binary NS system tational 3PN point mass binary from Ref. [30], which closely

as a function of GW frequency (twice the orbital frequency),
computed along each of our four irrotational equilibrium
sequences. From bottom to top, the sequences correspond to
NS with compactness M/R = 0.12,0.14,0.16, and 0.18. All
models assume a polytropic EOS with I' = 2 and a NS mass of
1.35M, for both components. The asterisks indicate the indi-
vidual equilibrium configurations calculated along each se-
quence, while the lines show our best fit using Eq. (1) and
the values of Table L
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tracks our most compact model. Asterisks indicate the terminal
point along each sequence, where a cusp develops. The slanted
straight lines show, from top to bottom, the point-mass
Newtonian energy spectrum ( o f~1/3) multiplied by 1.0, 0.9,
0.75, and 0.5. The last three values are used to define character-
istic break frequencies f|g, f.5, and f5y, where the energy
spectrum has dropped by the corresponding fraction. The units
on the right and top axes show the corresponding dimension-
less quantities, with the mass dependence scaled away.
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corresponding radial infall velocity along our equilib-
rium sequences, we find that v, never exceeds 5% of the
orbital velocity, even at the point where we define f, (the
corresponding fraction at the point where we define f»s is
about 2%) [32]. Ultimately, the optimum choice should be
determined by data analysts, taking into account the
accuracy with which the break frequencies can be ex-
tracted using matched filtering or other techniques [3,33].
Preliminary studies of this problem have already been
performed for both broad-band and narrow-band inter-
ferometer configurations [34,35]. Defining a precise break
frequency may not even be necessary. Instead, the GW
inspiral templates could be terminated at high frequency
in a manner that reproduces the energy spectrum given by
a simple analytic form, such as our Eq. (1). The free
parameters k; and k, could then be measured experimen-
tally and compared directly to the predictions of various
realistic nuclear EOS used in computing binary equilib-
rium sequences. In future work, we plan to compute such
sequences, and the corresponding energy curves, for a
wide variety of published, realistic NS EOS.
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