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The force experienced by objects embedded in a correlated medium undergoing thermal
fluctuations —the so-called fluctuation-induced force —is actually itself a fluctuating quantity.
Using a scalar field model, we compute the corresponding probability distribution and show that it
is a Gaussian centered on the well-known Casimir force, with a nonuniversal standard deviation that
can be typically as large as the mean force itself. The relevance of these results to the experimental
measurement of fluctuation-induced forces in soft condensed matter is discussed, as well as the
influence of the finite temporal resolution of the measuring apparatus.
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In 1948, Casimir predicted that two uncharged con-
ducting plates facing each other in vacuum are subject to a
long-range universal attraction [1]. This attraction is due
to the modification of the quantum electromagnetic fluc-
tuation spectrum due to the boundary conditions imposed
by the conducting plates. In the past 15 years, the concept
of Casimir force has been extended to thermally excited
elastic forces between objects embedded in a medium
with scale-free fluctuations altered by the presence of
the objects [2]. Soft matter examples comprise inclusions
in complex fluids undergoing thermal fluctuations [2],
e.g., fluid membranes [3,4] and critical mixtures [5], or
interfaces bounding complex fluids, e.g., liquid crystals
[6,7] and superfluids [8,9]. One of the main features of
these Casimir interactions is their universality. In a given
geometry and at a given temperature, the fluctuation-
induced forces depend only on the universality class of
the fluctuating medium and on the nature of the imposed
boundary conditions (the material’s elastic constants and
the coupling strength of the boundaries are irrelevant).

While the development of micro- and nanoscale ex-
periments has allowed precise direct verifications of the
original vacuum’s Casimir force [10—12], experimental
characterization of thermal fluctuation-induced forces in
soft matter has been scarce [13,14]. The main difficulty
with measuring these forces is usually imputed to the
presence of stronger background elastic and van der Waals
forces. Another important point which has been over-
looked is that the fluctuation-induced force is itself a
fluctuating quantity: what is commonly referred to as
the “Casimir force” is only its ensemble average. The
fluctuating nature of this force should be taken into proper
account before its complete characterization can be
achieved. Similar consideration holds for the experimen-
tal measurement of quantum Casimir forces [11,12,15] on
the classical regime.

In this Letter, we attempt to characterize the fluctua-
tions of thermally excited elastic forces in condensed
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matter. Generically, we consider in a space of dimen-
sion d a fluctuating medium described by a scalar field ¢
with an elastic energy density proportional to (V ¢)?. For
instance, ¢ could represent the deviation of the director
of a nematic liquid crystal [16] from a uniform orientation
(in the one-elastic-constant approximation) [6] or the
composition of a mixture at its critical point [9].

We consider two plates of lateral extension L separated
by a distance H (see Fig. 1) that impose ¢ = 0 on their
boundary. Our main result [Eq. (15) below] is that the
force on each plate is a Gaussian variable (for d > 1), of
average the universal Casimir force (F) ~ kgTL?"'/HY,
and of nonuniversal variance (AF)?. Its dispersion can be
characterized by the “noise-over-signal ratio” AF/(F).
By calculating AF we show that this ratio scales as:

AF <H >(dl)/2<H >(d+l)/2
(Fy \L '
In the above result, a corresponds to a microscopic length
scale at which either the continuum description breaks
down or the boundary conditions are not efficiently set by
the plates [17]. We also consider the dynamics of the field

and the role of the finite temporal resolution 7 of a
measurement apparatus. If 7, is the microscopic time
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FIG. 1 (color online). Two identical macroscopic plates nor-
mal to the x axis immersed in a fluctuating correlated medium.
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scale associated with the microscopic length a, we show
that the noise to signal ratio is significantly reduced if the
apparatus’ resolution induces some additional averaging
(i.e., 7 > 7,). More precisely, the average is still (F), but
the noise to signal ratio now scales as:

AF, (H )(dl)/Z(H ><d+1)/2 \/?a )
(F,y \L a T

The relevance of the above results to experimental situ-
ations is discussed at the end of this Letter.
We consider an elastic Hamiltonian of the form

H1o) =5 [ RIVORTP, G

with R = (x,r), and x the coordinate in the direc-
tion normal to the plates. We assume that the plates im-
pose Dirichlet boundary conditions, ie., ¢(x =0,r) =
¢(x = H,r) = 0. The whole system is in contact with a
heat bath imposing the temperature 7. For this minimal
model, the free energy F(H) of the system can be exactly
calculated as a function of the interplate distance H [8].
The Casimir force (F(H)) = —dF/dH, i.e., the ensemble
average of the fluctuation-induced force, is given by the
universal formula

Ld*l
(F)= _kBTAdF’ “4)

where the prefactor A; = (d — 1)I['(d/2){(d)/(4m)%? de-
pends only on the spatial dimension d.

We pursue another route to calculate the Casimir in-
teraction, which yields a clear intuitive picture of the
origin of the fluctuation-induced force and permits evalu-
ation of its fluctuations. We use the stress tensor associated
with the field [18]: T;; = £6,; — (9,;4)[0E/3(d;¢)], where
E=1K(V¢)* is the energy density associated with
Eq. (3). We first restrict our attention to the effect of the
interplate medium on the plate located at x = H. For a
given conformation of the field, the projection F<(H) on
the x axis of the elastic force exerted on the inner side of
this plate is given by the integral of T,,, which reduces to

) =5 f o, $(H, D)L, 5)

since ¢ vanishes all along the plate. Note that this
quantity is always positive; therefore, the field always
pushes on the plate. Fourier transforming the field in
the transverse direction: ¢q(x) = [d 'r ¢p(x,r)e T
yields H =Y E, and F<(H)=Y_,fq(H) with
Eq = 3L K [dx[¢q(x)(=93 + ¢*)p—q] and fq(H) =
FL'"9K|0,¢4(H)|*. These expressions suggest an inter-
esting picture: each E, can be understood as the energy of
a three-dimensional string parametrized by [x, Re(¢,),
Im(¢,)]; each of these virtual strings has a line tension
proportional to the rigidity K of the medium and is
confined around the x axis by a harmonic potential of
stiffness proportional to g”. These lines are pinned at
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x=0 and x = H as a consequence of the Dirichlet
boundary conditions (see Fig. 2), and the force they exert
on the plate located at x = H is precisely f,(H). The total
partition function of the medium between the plates is the
product Z = [[jq<1/a £q Of those of the independent
strings

dq(H)=0
Zy= ["" " Dgye mIT, o)
¢q(0):0

where a~! is the high wave vector cutoff. The number of
noninteracting strings describing our system is from
simple mode counting:

N, ~ (5 )”H. )

a

Determining the distribution of the elementary forces
fq(H) is straightforward. Since the free energy associated
with the string fields ¢, is quadratic, the distribution of
d,¢q(H) is a Gaussian with zero mean and variance
0,0,Gq(H, H), where Gy(x,y) = (dq(x)dp_q(y)) is the
two-point correlation function [19]:

kB_Tsinh[q(H — u)]sinh(gv)
K g sinh(gH)

Gqlx,y) = L! )
where u = max(x, y) and v = min(x, y). Since the distri-
bution of d,¢, is Gaussian, the fluctuating elementary
forces follow a y? distribution:
)
— , 9
exp(~ ©)

T[ foH) _ f}= (/)

(fq(H)) 2mf

where 6 is the Heaviside step function, and
kgT

oy = 2T [2 —q coth(qm} (10)

2 | 7a

The cutoff a~! appears in Eq. (10) because of the dis-
continuity of the derivative of G4(x, y) [20], as a mani-
festation of the importance of the short wavelength
fluctuations. From Eq. (8) follows that the elementary
forces undergo large fluctuations: their standard devia-
tion, given by

Af (H) = V2(fq(H)), (11)

compares with their average value.

Re [¢]

FIG. 2. Typical configuration of a fluctuating string pinned at
x =0 and x = H. The dashed cylinder sketches the effective
cage imposed by the confining quadratic potential of curvature
KqZ/Ld—l .
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We can now consider the whole space consisting of
three independent subsystems delimited by the plates.
The instantaneous force F(H) experienced by the plate
at x = H is the difference between two independent
stochastic variables F<(H) — F<(c0), where F<(o0)
obviously describes the contribution of the outer medium
x > H. Within the string picture, F(H) = > [fq(H) —
fq(0)] thus appears as the sum of N, independent
variables.

Mean Casimir force—From Eq. (10), the mean
force (F) experienced by each plate is given by (re-
placing the discrete sum by an integral and disregard-
ing the cutoff as the integral converges): (F) =
TkgT(L/2m)*" ! [d91q[q — g coth(¢H)], which yields
the result quoted in Eq. (4) above. We thus recover the
usual expression of the Casimir force, classically ob-
tained by differentiation of the free energy.

The cancellation of the nonuniversal cutoff contribu-
tion in the former sum is easily understood in terms of the
string picture: since a string with label q has a correlation
length =~ ¢!, the strings with ¢ > H~! do not feel the
presence of the second plate and their average contribu-
tions on both sides of the plate cancel exactly. Conversely,
the force imbalance for each string with ¢ < 1/H scales
as —kgT/H, and there are (L/H)?"' such strings, the
product yielding the scaling form of the Casimir force
in Eq. (4).

Distribution of the fluctuation-induced force.—The
variance of the force, (AF)? = (F?) — (F)?, is the sum
of the 2N, elementary contributions (Af,)* from both
sides of the plate:

1 dd—lq
2 — 2rd=1 y —
(AF)? = (kg T)2L : f e

X {[% - qcoth(qH)T—i—(i - q)Z}, (12)

ma

where the integral must be limited to |q] <a™! to
be defined When H > a, the leading behavior
is given by the limit H— oo, ie, (AF)>~
(kgTP’L" [ <1 l(ma) ™" — qFq?72dg, which yields

T
AF ~ \/171“37 (13)

where again N, is the number of transverse Fourier modes
defined in Eq. (7) above. Contrary to the Casimir (aver-
age) force, the variance of the fluctuation-induced force is
not universal and is intrinsically related to the physics
ruling the interaction between the elastic medium and the
immersed plates (through the cutoff). Since the short
wavelength fluctuations of the ¢ strings are mainly re-
sponsible for the force fluctuations, the scaling behavior
of Eq. (13) is expected to hold for any macroscopic
external object with smooth shape at the scale a. The
force fluctuations also include a subdominant universal
part A’F, which can be exactly calculated as
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L

(@~1/2kgT
A'F = (dAd)W(—) kot

. (14)

H
This cutoff independent part of the dispersion originates
from the Ny = (L/H)? ! strings with ¢ < H™', as in the
case of the mean Casimir force.

The /N, factor in Eq. (13) can easily be understood
from the central limit theorem applied to the extensive
system of 2N, noninteracting strings (for d > 1), gener-
ating a force with mean and standard deviation of order
kgT/a. The central limit theorem holds since for all the
strings Afy(H)/AF — 0 as N, — . As a consequence,
the distribution P of the force experienced by the plate
at x = H is a Gaussian:

Pp(F = f) =

| -0
\27AF 2(AF)?

with its mean and variance being given by Eqs. (4) and
(12), respectively.

To summarize, the net force on a plate is the difference
between two uncorrelated Gaussian stochastic processes,
each of nonuniversal typical amplitude (mean and devia-
tion) dominated by small wavelength contributions. The
average of the net force being the difference between the
averages, the small wavelength contributions from each
side cancel, leaving only the weaker universal Casimir
term. In contrast, variances add up so that the standard
deviation of the net force depends on microscopics.

Estimation of the Casimir force dispersion.—Assum-
ing that the instantaneous fluctuation-induced force can
be measured with a perfect precision, the noise over
signal ratio is thus given by Eq. (1), obtained from
Egs. (4) and (13) using N, = (L/a)?"". Let us estimate
itin a typical experimental situation, e.g., a nematic liquid
crystal with a director strongly anchored normal to the
plates. In this case, we have d = 3 and a =~ | nm. If the
typical size of the plates is L = 10 um and their separa-
tion is H =~ 100 nm, then the amplitude of the fluctuations
is a hundred times larger than the mean force (F) = 1 pN.
In order to lower the noise over signal ratio to 1, the size
of the plates must reach 1 mm.

In all the previous discussions, we have implicitly
assumed d > 1. It is interesting to notice the singularity
of the one-dimensional (1D) case. The net force experi-
enced by the plate can no longer be interpreted as the
result of a large number of independent contributions. A
1D elastic medium is indeed equivalent to the sole ¢ = 0
string. Consequently, the distribution of forces F(H) and
F(0) are directly given by Eq. (9) taking the limit ¢ — 0.
However, even if the distribution is no longer Gaussian,
the scaling of the noise over signal ratio in Eq. (1) still
holds in the limit d — 1.

Measurement of fluctuation-induced forces and tempo-
ral resolution.—It has just been shown that the equilib-
rium distribution of fluctuation-induced forces may be
extremely broad. Any experimental measurement will,
however, provide a filtered signal which is averaged
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over the temporal resolution 7 of the apparatus. In order
to estimate to what extent the fluctuating nature of
fluctuation-induced forces may be experimentally re-
vealed, a dynamical description is required. A precise
description of the motion of the plates is beyond the scope
of this tentative approach. In a simple picture, the mea-
surement apparatus provides a signal F,(r) = [ x(t —
t)F(¢')dt'. Tts response function y has a typical decay
time 7 and is causal and normalized [ [§ dt’ (1) = 1].
The limit 7 — 0 would correspond to a perfect apparatus
which provides a signal completely described by Eq. (15).

The short wavelength excitations of the strings domi-
nate the fluctuations of the net force as it has been
previously shown. When measuring the force, the appa-
ratus averages over N, =~ 7/7, independent processes, in
which 7, is the microscopic correlation time of the fluc-
tuations associated to the modes with wave vector ~ g~ !
in the x direction. Consequently, we expect the force
dispersion AF to be lowered by a factor of 1/4/N,, which
leads to the result reported above in Eq. (2).

In order to check this analysis, we have studied the
simplest case of a local and dissipative dynamics for the
¢4 fields described by the Langevin equations

Y0,hq(x, 1) = K[03 — ¢*]q(x, 1) + £q(x, 1),

subject to ¢ (0,1) = ¢4(H, 1) =0. In the above equaion,
&4 1s a Gaussian white noise with zero mean and correla-
tions chosen so as to ensure thermal equilibrium,
i-e-9 <§q(x’ t)fq’ (xl: t/)> = ZkaT(ZW)d71 6d71(q + ql)5(x -
x")8(t—1'). This set of N, equations corresponds to the
Rouse dynamical equations for the N, pinned elastic
stings undergoing thermal fluctuations [21]. The linearity
of the Langevin equations above [Eq. (16)] ensures that
the ¢4’s are Gaussian fields, so that it is straightforward to
determine the statistical properties of the measured force.

The finite temporal resolution 7 does not modify the
mean force which remains given by Eq. (4), (F,) = (F).
The dispersion of the measured forces can be expressed as
the product of the ideal expressions calculated previously
by an attenuation factor:

AF, = AFY(1/7,),

(16)

a7

where for this dynamics 7, is given by 7, = ya?/K. The
asymptotic scaling behavior of Y(7/7,) does not depend
on the specific form of the response function y: we have
Y(0) =1 and Y(s)~1/y/s in the limit s> 1. This
simple model of a diffusive dynamics thus clearly corro-
borates the qualitative analysis that lead to Eq. (2) above.

Let us determine the effect of the finite temporal
resolution for the experimental example quoted above
(L=10 um, H=100 nm, a =1 nm). The order of
magnitude of the relaxation time 7, in an experiment
involving a nematic liquid crystal is around 0.1 us at
T = 300 K. Using a measurement device characterized
by 7~ 1 ms such as an optical tweezer [22], the noise
over signal ratio is lowered from 100 to 1.
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Generally, Eq. (2) quantifies to what extent a slow
measurement device is best suited for experimental ob-
servation of the universal part of fluctuation-induced
forces. From the above analysis, it also follows that re-
placing the fluctuation-induced force between small ob-
jects by the simple Casimir average when studying their
interactions and collective behavior may not be justified if
these objects are fast movers.
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