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Limit Cycles in Quantum Theories

Stanisław D. Głazek
Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, 00-681 Warsaw, Poland
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Renormalization group limit cycles and more chaotic behavior may be commonplace for quantum
Hamiltonians requiring renormalization, in contrast to experience based on classical models with
critical behavior, where fixed points are far more common. We discuss the simplest quantum model
Hamiltonian identified so far that exhibits a renormalization group with both limit cycle and chaotic
behavior. The model is a discrete Hermitian matrix with two coupling constants, both governed by a
nonperturbative renormalization group equation that involves changes in only one of these couplings
and is soluble analytically.
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have not examined the case of chaotic behavior in com- in the flow of couplings in complex two-dimensional
In 1971, one of us suggested that renormalization group
equations could have limit cycle solutions or more chaotic
behavior as well as fixed points when the renormalization
group equations involve two or more coupling constants
[1]. The 1971 paper did not mention the possibility that
renormalization group equations might have limit cycle
solutions even for differential equations for only one
coupling constant. But in 1993, the two of us defined a
simple Hamiltonian that requires the renormalization
of just a single bare coupling constant g�, where � is
the cutoff, and the coupling constant g� was found to
decrease steadily as � increased, until g� reached �1,
after which it jumped to �1 and started a new period
of steady decrease [2]. However, we did not recognize
or comment that this behavior constituted a genuine
limit cycle.

In this Letter, we analyze a discretized version of our
1993 model. We demonstrate that it exhibits even more
startling behavior because it has a renormalization group
that exhibits limit cycles or chaotic behavior, depending
on the values chosen for the discrete model’s free parame-
ters. The renormalization group equation for the discre-
tized model is soluble analytically, just as in our 1993
continuum model, but this equation itself has a discre-
tized form rather than being a differential equation. In the
presence of an ultraviolet cutoff �, the characteristic
feature of the limit cycle behavior for the model is an
infinite set of bound states with point of accumulation at
zero energy. Moreover, the bound-state energy eigenval-
ues approach zero energy as a geometrically decreasing
series in absolute magnitude, but this geometric behavior
has cutoff-dependent corrections for the lowest negative
eigenvalues. In contrast, when the ultraviolet cutoff is
taken to infinity, the model is renormalizable and the
limit cycle leads to an exact geometric series of bound
states with energies extending from negative and arbi-
trarily large all the way to arbitrarily close to zero. We
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parable detail, but towards the end of this Letter we
identify the conditions that guarantee chaotic solutions
for the model’s renormalization group equation.

The model Hamiltonian we published in 1993 has
no known direct physical application. But in 1999,
Bedaque, Hammer, and van Kolck showed that a three-
body Hamiltonian with two- and three-body delta func-
tion potentials and a cutoff in momentum space is
renormalizable and that the three-body coupling ap-
proaches a limit cycle as the cutoff � approaches 1 [3],
much as it does in our 1993 model. The model of Bedaque,
Hammer, and van Kolck, is applicable to the nuclear
energy levels of the triton, although the parameters suit-
able for representing the triton yield only one bound state.
It requires a somewhat different choice of parameters to
provide the best illustration of a limit cycle. In this case,
the deuteron would have a binding energy of 0 and the
triton would have an infinite set of bound states with
energies converging toward zero [3]. Bedaque et al. built
on the earlier work of Thomas [4] and Efimov [5], which
was recently reviewed by Nielsen, Fedorov, Jensen, and
Garrido [6]. Efimov already recognized the existence of
an infinite sequence of three-body bound states accumu-
lating at zero energy when the deuteron has a binding
energy of 0. The same models are applicable to the
analysis of interactions of three helium atoms, where
computations indicate that there are two bound levels,
and possibly to interactions of some other three-atom
systems as well [7].

In the case of the three-body problem, however, the
emergence of the limit cycle can be difficult to follow
because of the complexity of the mathematical approxi-
mations needed to extract the eigenvalues, while the
simplicity of our model enables us to analyze with care
how the limit cycle behavior emerges from the eigen-
value spectrum. We should also mention that Bernard
and LeClair recently observed a potentially cyclic effect
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models with anisotropic current interactions with two
couplings [8].

All these examples involve quantum Hamiltonians
subject to renormalization. In principle, limit cycles
could have arisen in statistical mechanical applications
of the renormalization group as well. But to our knowl-
edge, only one example of a limit cycle has been found
despite the vast number of known applications. The ex-
ample, a rough approximation for a three state Potts
model [9] in two dimensions, was proposed and analyzed
by Huse [10].

With a cutoff, our discretized model takes the form of a
finite size matrix with discrete eigenvalues. The discrete
matrix has a diagonal submatrix, plus two off-diagonal
pieces with two coupling constants. The Hamiltonian
requires renormalization in the limit of infinite cutoff.
Just as in the continuum case, the renormalization can be
constructed analytically and leads to the limit cycle or
chaotic behavior in one of the two couplings, while the
second coupling constant stays fixed. However, the ana-
lytically obtained limit cycle is defined only for a discrete
sequence of cutoffs, rather than for a continuously vary-
ing cutoff. Using an alternative formulation of the renor-
malization group (see below), it is possible to define and
compute a renormalization process with a continuously
varying cutoff, but our studies with the continuous cutoff
variation are not discussed here.

The finite matrix Hamiltonians can be diagonalized
numerically, when the cutoff is small enough. The renor-
malizability of the Hamiltonians we discuss here can be
demonstrated to high numerical accuracy with cutoffs
small enough to allow numerical diagonalization. We
provide the demonstration with a comparison of the ei-
genvalues of two matrices with two different cutoffs, one
of size 37� 37, the other of size 42� 42.

The Hamiltonian to be used in this Letter has the form

Hmn�gN; hN� � �EmEn�
1=2�
mn � gN � ihNsmn	; (1)

where m and n are integers. For m � n, 
mn � 1 and
smn � 0. For m� n, 
mn � 0 and smn � �m�n�=jm� nj.
The numbers En � bn with b > 1 are eigenvalues of the
operator H0 that has matrix elements hmjH0jni �
Hmn�0;0�. The eigenvalues are called kinetic energies of
the corresponding eigenstates, jni. The remaining part of
the Hamiltonian, HI �H�H0, is called an interaction,
and HI�0;0� � 0. The largest energy allowed in the dy-
namics is �N � bN , which defines the ultraviolet cutoff so
that the subscripts m;n
N.

The continuous version of this model [2] is recovered in
the limit b! 1. The discrete model itself has been dis-
cussed in the case hN � 0 using similarity renormaliza-
tion group idea [11] and Wegner’s equation [12,13]. The
model requires renormalization and exhibits asymptotic
freedom if hN � 0. Hamiltonians of Eq. (1) with hN � 0
can be derived in a number of ways, ranging from a
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discretization of a nonrelativistic Schrödinger equation
for a particle on a plane with a two-dimensional 
 poten-
tial to a discrete version of the transverse dynamics of
partons in quantum field theory.

At first, the model with hN � 0 does not appear much
different from the one with hN � 0. All Hamiltonians
defined by Eq. (1) are Hermitian and have a general
ultraviolet logarithmically divergent structure. As we
demonstrate below, when hN is not zero, the model ex-
hibits limit cycle behavior as N goes to infinity (or chaos).
We prove this by deriving a renormalization group equa-
tion that determines gN�1 (used with a cutoff �N�1),
given gN and hN used with cutoff �N , such that the low
energy eigenvalues stay fixed.

To introduce the renormalization group analysis, the
eigenvalue problem

XN

n��1

Hmn n � E m (2)

can be solved for  m,m 
 N, assuming that one knows E
and using the Gaussian elimination. In the first step,
one solves for  N in terms of all other components  n
with n < N. In the next step, one expresses  N�1 in terms
of components  n with n < N � 1, and so on. We carry
out the first p such steps assuming E is small enough to
be neglected. This will be sufficient to enable us to recog-
nize the existence of limit cycles of period p or less, when
they occur.

It is convenient to write the eigenstate components in
the form  n � b�n=2�n for all n 
 N, and define �N �P
N
n��1�n. The first step of the Gaussian elimination

gives then

�N � �gN � ihN��N�1=�1� gN�: (3)

Substituting this result into the remaining N � 1 equa-
tions, one obtains a new set that does not explicitly
involve the component with the largest kinetic energy
but has a different coupling constant instead. Namely,

gN�1 � gN � �g2N � h2N�=�1� gN�; (4)

while hN�1 � hN . Moreover, Eq. (4) can be simplified.
Define angles �N and � to be

�N � arctan�gN=hN�; (5)

� � �N � arctan�hN�: (6)

The simplified equation is

�N�1 � �N � �: (7)

It is now seen that the result of p steps of elimination is

gN�p � hN tan��N � p�	: (8)

We can now demonstrate the existence of renormaliza-
tion group limit cycles for the discrete Hamiltonians
of Eq. (1). All that is necessary is to choose � to be
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TABLE I. The columns contain: n—the number of the ei-
genvalue in the ascending order (positive eigenvalues with n �
9; 10; . . . ; 18 are not explicitly discussed in the text and are
omitted here for brevity); � � 216 —the eigenvalues of the
Hamiltonian with N � 16, M � �25, and b � 2 (see the text
for details); � � 211 —the eigenvalues of H after five discrete
renormalization group steps (with the same M).

n � � 216 � � 211

42 0:954734� 10�5

41 0:328953� 10�5

40 0:131845� 10�5

39 0:545303� 10�4

38 0:228087� 10�4 0:298354� 10�4

37 0:956198� 10�3 0:102798� 10�4

36 0:401063� 10�3 0:412015� 10�3

35 0:168593� 10�3 0:170407� 10�3

34 0:709615� 10�2 0:712770� 10�2

33 0:298253� 10�2 0:298812� 10�2

32 0:125234� 10�2 0:125332� 10�2

31 0:526682� 10�1 0:526853� 10�1

30 0:221724� 10�1 0:221755� 10�1

29 0:931986� 10�0 0:932040� 10�0

28 0:391347� 10�0 0:391357� 10�0

27 0:164586� 10�0 0:164588� 10�0

26 0:692886� 10�1 0:692889� 10�1

25 0:291245� 10�1 0:291245� 10�1

24 0:122296� 10�1 0:122296� 10�1

23 0:514332� 10�2 0:514332� 10�2

22 0:216526� 10�2 0:216526� 10�2

21 0:910135� 10�3 0:910135� 10�3

20 0:382169� 10�3 0:382169� 10�3

19 0:160723� 10�3 0:160723� 10�3

8 �0:622117� 10�6 �0:622117� 10�6

7 �0:206506� 10�4 �0:206506� 10�4

6 �0:661561� 10�3 �0:661561� 10�3

5 �0:211707� 10�1 �0:211708� 10�1

4 �0:677466� 10�0 �0:677580� 10�0

3 �0:216826� 10�2 �0:217999� 10�2

2 �0:697598� 10�3 �0:846472� 10�3

1 �0:270871� 10�5
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�=p; then there is a limit cycle of period p in which gN�p
and hN�p are identical to gN and hN , respectively, since
tan is a periodic function of its argument. For example,
with N � 16 and p � 5, so that h16 � tan��=5�, and
when one arbitrarily sets g16 � 0:0606, one obtains a
cycle with g15 � 0:626, g14 � 3:090, g13 � �1:731,
g12 � �0:441, g11 � g16, etc. The numbers illustrate the
range of couplings that appear, far outside the perturba-
tive range of jgj � 1. There is no upper bound on the size
of g that one can obtain in the cycle by choosing different
values of g16. But how does this limit cycle impact the
properties of the Hamiltonian in Eq. (2)?

To truly understand the impacts of the limit cycle on
the Hamiltonian, we need to study its eigenstates. For this
purpose, we consider a finite version of the Hamiltonian,
obtained by imposing a lower cutoff of �25 on the
indicesm and n. The Hamiltonian now has 42 eigenstates.
These eigenstates are easily determined numerically for
b � 2. The results are shown in the column labeled � �
216 in Table I. But, according to our elimination process,
combined with the limit cycle, the same Hamiltonian
with the same coupling constants, the same lower limit
on m and n of �25, but with an upper cutoff at N � 11,
should have the same low energy eigenvalues. To confirm
this, the eigenstates of the Hamiltonian with an upper
cutoff of N � 11 are shown in the column labeled � �
211. Table I demonstrates that the eigenvalues are indeed
identical—to six significant figures—as long as they lie
below 0.02 in magnitude, and identical to three signifi-
cant figures if they lie below about 100 in magnitude.

We have one more comparison to make between the two
Hamiltonians. If we were to change the lower cutoff from
�25 to �30 on the Hamiltonian with upper cutoff N �
11, then the second Hamiltonian would differ from the
first only in a scale shift. That is, if every element of the
first Hamiltonian is multiplied by 1=32, the result is equal
to the second Hamiltonian matrix with a lower cutoff at
�30. This means that if the eigenvalues of the first
Hamiltonian are multiplied by 1=32, the result is the
eigenvalues of the second Hamiltonian with the changed
lower cutoff. But the large eigenvalues of the second
Hamiltonian are unaffected by where the lower cutoff
sits and, hence, must be essentially the same as 1=32
times the eigenvalues of the first Hamiltonian even
when the lower cutoff of the second Hamiltonian is
�25. This is also easily verified from Table I. In particu-
lar, all eigenvalues of the second Hamiltonian in Table I
that are larger in magnitude than 0.001 are identical to
1=32 times an eigenvalue of the first Hamiltonian to at
least five significant figures.

Given the two comparisons between the two
Hamiltonians of Table I, we can infer a single compar-
ison between the eigenstates of the first Hamiltonian in
isolation. Namely, for eigenvalues well below the upper
cutoff (�16 � 65 536) and well above the lower cutoff
(about 0.000 000 03), they should come in groups of five
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that differ, one from the next, by a factor very close to
1=32. This is confirmed by Table I. Each group of five
eigenstates contains a subgroup of four positive eigenval-
ues, which differ internally by a ratio of roughly r � 25=4,
and one negative eigenvalue. For example, see the group
of eigenvalues with numbers 20, 21, 22, 23, and 6, and
another group with 24, 25, 26, 27, and 5. The ratios of
adjacent positive eigenvalues in the first group are
E20=E21 � 0:998 705=r, E21=E22 � 0:999 730=r, and
E22=E23 � 1:001 280=r; and in the second group are
E24=E25 � 0:998 714=r, E25=E26 � 0:999 733=r, E26=
E27 � 1:001 280=r. At the same time, the ratios at the
boundaries of the groups are E19=E20 � 1:000 250=r,
E23=E24 � 1:000 270=r, and E27=E28 � 1:000 270=r.
Using the numbers given in Table I, one obtains
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E23=E27 � 1:000 001=32, E22=E26 � 0:999 996=32, E21=
E25 � 0:999 994=32, and E20=E24 � 0:999 984=32. It is
thus evident from Table I that the intermediate positive
eigenvalues form groups of four, with all ratios within 1%
of r, that repeat to an accuracy reaching six significant
figures. One can also evaluate E6=E20 � �1:731 07 and
E5=E24 � �1:731 10, while E6=E5 � 0:999 965=32, and
see that the negative eigenvalues belong to the recurring
groups of five.

That the ratios of consecutive positive eigenvalues, for
intermediate energies, are close to r � 25=4 � bp=�p�1� is
a surprise. The only requirement we can derive for inter-
mediate energies is that the product of 4 (i.e., p� 1)
consecutive ratios should be 25 (i.e., bp), apart from
very small numerical errors. This is verified, to five
significant figures, for energy eigenvalues between 0.002
and 0.16 in the case of the first Hamiltonian. But the
appearance of r in this pattern seems to be linked to the
size of b. When b is made smaller than 2, the ratios
become even closer to r. When b is made much larger
than 2, then one can show that the ratios of consecutive
positive eigenvalues become very different from r, be-
cause to leading order for large b, the eigenvalues are
directly determined by the sequence of couplings gN:

EN � bN�1� gN�; (9)

for any N.
The bound states of the model Hamiltonian of this

Letter have different behaviors in two limits: the contin-
uum limit b! 1 and the large-b limit. In the continuum
limit, one recovers the cyclic behavior of the coupling
computed already in [2], and it can be shown now that
that behavior was associated with the finite bound-state
eigenvalues of the renormalized theory forming a geo-
metric series running from 0 all the way to negative
infinity. Denote the ratio of adjacent bound-state energies
by ~rr. For b near 1, we find that the discrete Hamiltonian
continues to have just one bound state for each period of
the limit cycle, and, hence, the ratio ~rr is equal to bp. As
b! 1, p must go to infinity to keep the ratio of energy
eigenvalues fixed. This means that hN becomes approxi-
mately equal to �=p and goes to zero in the continuum
limit. But hN goes to zero in such a way that allows the
discrete sum of states of Eq. (2) to be replaced by a
continuum integration with nonzero couplings. The de-
tails of this continuum limit are straightforward and are
omitted.

In the opposite limit of very large b, the number of
bound states per cycle becomes more arbitrary. There is a
bound state for each coupling gN within a cycle that is
greater than 1. It is easily verified that in the case p � 5,
either one or two eigenvalues per cycle will be negative,
depending on the value of the initial coupling for the
largest N. As p becomes very large, typically a quarter of
the eigenvalues are negative. But we also note that, for
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any value of b greater than 1, there can be chaotic
solutions to the renormalization group as well as limit
cycle solutions. Chaotic solutions occur whenever �=� is
an irrational number, in which case the sequence of
couplings gN has no finite period p at all. The possibility
of chaotic solutions to renormalization group equations
was noted in [1].

So far, we have focused on a single model Hamiltonian
with a simple one dimensional renormalization group.
The model has a Hermitian Hamiltonian matrix with a
nonzero imaginary skew-symmetric part that contributes
to logarithmic divergences. In this circumstance, the
renormalization group exhibits a limit cycle behavior
and leads to subsets of eigenvalues that recur in a geo-
metric series, with each subset of eigenvalues decreasing
by a constant factor relative to the prior subset, and each
subset contains negative bound-state eigenvalues. The full
set of negative eigenvalues ranges from zero to negative
infinity in the renormalized theory. Is this model unique
and exceptional in its departure from the fixed point
behavior, or is the departure a generic phenomenon
shared with many more quantum Hamiltonians? The
appearance of a limit cycle in three-body problems of
quantum mechanics [3,7] provides a far less trivial ex-
ample of the cycle for study and may be a warning that
more such examples could surface in the future. The
similarity renormalization group procedure for quantum
Hamiltonians [11] can be implemented using the generic
and elegant Wegner flow equation [12,13] and provides
one starting point for further study of this question.
Finally, while we discussed here only the limit cycle
case in detail, the possibility of chaotic behavior ensures
that further investigation of the model is also of interest
concerning fundamental issues beyond limit cycles in
quantum theories.
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