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FIG. 1. Doping dependence of Tc (solid line) and supercon-
ducting fluctuations in Bi2212 (open [8] and solid diamonds
[7]), YBCO (solid [9] and open squares [1]), Bi2201 (stars) [10],
and LSCO (open circles) [11]. Dotted line: leading-edge pseu-
dogap from photoemission [4] (arrows indicate that tempera-
tures are only lower limits); thick dashed line: weak pseudogap
temperature T� in YBCO [3]; solid circles: �=3, where � is the
peak position measured in tunneling [5]. Inset: triangles: two
gaps found in interlayer tunneling [12].
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From measurements of the thermal expansion anomaly
in underdoped YBa2Cu3O7�� (YBCO), Meingast et al. [1]
claim to have shown that the pseudogap effect is associ-
ated with superconducting fluctuations alone. However,
the fluctuations they observe do not persist all the way
up to the pseudogap onset T�. In fact, Fig. 1 shows that
these fluctuations, as well as all other direct evidence
for superconducting fluctuations in all the cuprates—
YBCO, Bi2Sr2CaxCux�1O8�� (Bi22x; x� 1, x � 0; 1),
and La2�xSrxCuO4 (LSCO)—terminate at a well-defined
temperature T0�x� which is considerably lower than T�,
with a different doping dependence (clearer saturation or
turnover at low x). Here T� is determined from a variety
of nonsuperconducting measurements: transport and heat
capacity (dashed line) [2,3], photoemission leading edge
(dotted line) [4], and tunneling ‘‘peak’’ feature (filled
circles) [5], assuming 2�=kBT

� ’ 6 [approximately con-
sistent with Ido et al. [6], who found a ratio 4.3]. Onset of
superconducting fluctuations at T0 is found from magnetic
measurements (Cu NMR 1=T2G reduction) [7], onset of
Kosterlitz-Thouless fluctuations [8], interlayer Josephson
tunneling [9] and magnetoresistance [10], and vortex
fluctuations [11]. The fluctuations found by Meingast
et al. clearly fall into this group, extending to only about
2=3ofT* at the lowest doping. Note that T� and T0 cor-
respond well to the large and small tunneling gaps found
by Krasnov [12].

If the weak pseudogap is caused by fluctuating super-
conductivity, then the opening of the leading edge gap
would suggest that the order parameter amplitude is large
at T�, and the absence of any evidence for phase fluctua-
tions until the much lower temperature T0 is, to say the
least, very puzzling. Meingast et al. must postulate that
the fluctuations persist, but their measurements lose sen-
sitivity well before T�. Recent data on Bi-2201 [10] makes
this postulate highly unlikely. Here Tc is only 3 K in the
pure compound, rising to 29.7 K in Li substituted mate-
rial. But for all these compositions, T0 is the same as that
found in bilayer cuprates. Such a coincidence strongly
suggests that T0 represents a real crossover line, unantici-
pated in the fluctuation model of the pseudogap.

Thus, the combined evidence of Fig. 1 provides strong
evidence of new physics in the range between T0 and T�,
unrelated to superconducting fluctuations. Several early
models [13–15] proposed the existence of two pseudogaps
in the cuprates, with only the lower of the two, the
‘‘strong’’ pseudogap T0, being associated with supercon-
ducting fluctuations. In particular, the two gaps are read-
ily explained by phase separation models (including
stripes) of the cuprates. For instance, Batlogg and
Emery [14] suggested that the weak pseudogap corre-
sponds to the onset of electronic inhomogeneity (stripe
fluctuations), and the strong pseudogap to the onset of
229703-1 0031-9007=02=89(22)=229703(1)$20.00 
superconductivity on individual stripes, while the macro-
scopic superconducting transition Tc is a signature of the
establishment of phase coherence between stripes.
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