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We present a quantum protocol for the task of weak coin flipping. We find that, for one choice of
parameters in the protocol, the maximum probability of a dishonest party winning the coin flip if the
other party is honest is 1=

���
2

p
. We also show that if parties restrict themselves to strategies wherein they

cannot be caught cheating, their maximum probability of winning can be even smaller. As such, the
protocol offers additional security in the form of cheat sensitivity.
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considerations can be treated quantitatively by assigning
numerical costs to the various possible results. Given the

security parameters go to infinity. The first partially bias-
resistant SCF protocol, presented by Aharonov et al. [6],
In 1981, Blum [1] introduced the following crypto-
graphic problem: Alice and Bob have just divorced and
are trying to determine who will keep the car. They agree
to decide the issue by the flip of a coin, but they can
communicate only by telephone. The question is whether
there is a protocol that allows them to decide on a winner
in such a way that both parties feel secure that the other
cannot fix the outcome.

Two-party protocols, of which this is an example, are
some of the most problematic in classical cryptography.
In fact, there are no two-party classical protocols whose
security does not rely upon assumptions (many of which
are threatened by quantum computation) about the com-
plexity of a computational task. Kilian explains [2]: ‘‘[In
a two-party protocol] both parties possess the entire tran-
script of the conversation that has taken place between
them. [. . .] Because of this knowledge symmetry condi-
tion there are impossibility proofs for seemingly trivial
problems. Cryptographic protocols ‘‘cheat’’ by setting up
situations in which A may determine exactly what B can
infer about her data, from an information-theoretic point
of view, but does not know what he can easily (i.e., in
probabilistic polynomial time) infer about her data. From
an information-theoretic point of view, of course, nothing
has been accomplished.’’ (Emphasis added.) Conversely,
when we move from classical to quantum cryptography,
we find many two-party protocols whose security rests
only upon the validity of quantum mechanics. Thus, from
a quantum information-theoretic point of view, some-
thing significant can be accomplished. Furthermore,
quantum protocols can naturally exhibit a type of secur-
ity known as cheat sensitivity [3]: Whenever a party
cheats above some threshold amount, he or she runs a
risk of being caught. This can provide a strong deterrent
to cheating. For instance, if two parties need to imple-
ment a protocol many times, they may stand to gain more
from the preservation of the trust of the other party than
they do from cheating in a single implementation. Such
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striking contrasts between what can be accomplished in
classical and quantum two-party protocols, the analysis
of such protocols provides valuable insights into the dif-
ferences between classical and quantum information
theory.

In this Letter, we will be concerned with a crypto-
graphic task called coin flipping.We begin by distinguish-
ing a strong and a weak form, both of which are adequate
for Blum’s original problem.

Strong coin flipping (SCF).—Alice and Bob engage in
some number of rounds of communication, at the end of
which each infers the outcome of the protocol to be either
0, 1, or fail. If both are honest, then they agree on the
outcome and find it to be 0 or 1 with equal probability.
Suppose, on the other hand, that one of the parties, X, is
dishonest. In this situation, X cannot increase the proba-
bility of his/her opponent obtaining the outcome c to
greater than 1=2� �cX, for either c � 0 or c � 1. The
parameters �0A; �

1
A; �

0
B; �

1
B, which specify the degree to

which the protocol resists biasing, must each be strictly
less than 1=2,

Weak coin flipping (WCF).—This is simply SCF with-
out any constraints on �0A or �1B. The parameters �A � �1A
and �B � �0B must be strictly less than 1=2 and specify the
bias resistance of the protocol.

An SCF protocol ensures that neither party can fix the
outcome to be 0 or fix the outcome to be 1. This protocol is
appropriate when the parties do not know which outcome
their opponent favors. By contrast, a WCF protocol en-
sures only that Alice cannot fix the outcome to be 1 and
that Bob cannot fix the outcome to be 0. This is appro-
priate if Alice and Bob are playing a game where Alice
wins if the outcome is 1 and Bob wins if the outcome is 0.

It has been shown by Lo and Chau [4] that a perfectly
bias-resistant SCF protocol, i.e., one having �0;1A;B � 0, is
impossible. Recently, Kitaev [5] has shown that it is also
impossible to find an arbitrarily bias-resistant SCF pro-
tocol, i.e., one for which �0;1A;B ! 0 in the limit that some
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had �0;1B ’ 0:354 and �0;1A � 0:414. We later showed

that �0;1A � �0;1B [7]. If �cA � �cB for c � 0 and 1, we call
the protocol fair; if �0X � �1X for X � A and B, we call
it balanced. A fair and balanced SCF protocol
with �0;1A;B � 1

4 was recently discovered by Ambainis [8];
the possibility of SCF with this degree of security also
follows from our analysis [9] of quantum bit commitment.
In fact, the results of Ref. [9] imply the existence of a
balanced SCF protocol with �0;1A � 	 and �0;1B � 
 for
any pair of values 	;
 satisfying 	� 
 � 1=2.

Much less is known about WCF. Indeed, whether arbi-
trarily bias-resistant WCF is possible or not remains an
open question. Since an SCF protocol yields a WCF
protocol with parameters �A � �0A and �B � �1B, the
protocol of Ref. [9] yields a WCF protocol with �A �
�B � 1=2. However, it is likely that by making a SCF
protocol unbalanced one can lower the values of �1A and
�0B at the expense of �0A and �1B. Thus, one would expect
there to exist a WCF protocol with better security than
the one derived from Ref. [9]. This expectation is borne
out by the results of this Letter. Specifically, we demon-
strate the existence of a three-round WCF protocol for
any �A, �B satisfying �1=2� �A	�1=2� �B	 � 1=2. In
particular, this implies that there exists a fair WCF
protocol with �A;B � �

���
2

p

 1	=2 ’ 0:207.

We also characterize the cheat sensitivity of this pro-
tocol. Specifically, we consider each party’s threshold for
cheat sensitivity, defined as the maximum probability of
winning that the party can achieve while ensuring that
his or her probability of being caught cheating remains
strictly zero. Since a party can achieve a probability of
winning of 1=2 without cheating, the minimum possible
threshold is 1=2. The maximum possible threshold is
simply the party’s maximum probability of winning.
The protocol is said to be cheat sensitive only if the
threshold is less than this maximum value. We find that,
for suitably chosen parameters, the protocol presented
here can be cheat sensitive against both parties simulta-
neously. Although no parameter choices yield a threshold
of 1=2 for both parties simultaneously, it is possible to
obtain such a threshold for one of the parties.

The protocol is as follows:
Round 1.—Alice prepares a pair of systems in a (typi-

cally entangled) state j i 2 H A �H B; and sends sys-
tem B to Bob.

Round 2.—Bob performs the measurement associated
with the positive operator-valued measure (POVM)
fE0; E1g on system B, and sends a classical bit b indicating
the result to Alice.

Round 3.—If b � 0 then Bob sends system B back
to Alice, while if b � 1 then Alice sends system A
to Bob. The party that receives the system then performs
the measurement associated with the projection valued
measure fj bih bj; I 
 j bih bjg, where j bi � I�������
Eb

p
j i=

���������������������������
h jI � Ebj i

p
.
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The different possible outcomes are as follows:
(i) b � 0, Alice finds j 0ih 0j; Bob wins.
(ii) b � 0, Alice finds I 
 j 0ih 0j; Alice catches Bob

cheating.
(iii) b � 1, Bob finds j 1ih 1j; Alice wins.
(iv) b � 1, Bob finds I 
 j 1ih 1j; Bob catches Alice

cheating.
Notice that, unlike other proposed two-party protocols,

at no stage does this protocol require either party to make
classical random choices. While this protocol is sufficient
for WCF, it is insufficient for SCF because Bob can al-
ways choose to lose by simply announcing b � 1. We will
see that one can characterize an instance of the protocol
completely by specifying the POVM element E0 and the
reduced density operator on system B, � � TrA�j ih j	.
In order for the parties to have equal probabilities
of winning when both are honest, the constraint
Tr��E0	 � 1=2 must be satisfied. This implies, in particu-
lar, that j bi �

���
2

p
�I �

������
Eb

p
j i	:

We proceed by listing the most important properties of
the protocol. We then present several interesting specific
choices of E0 and �. The proofs are left until the end.

Property 1: Alice’s maximum probability of winning is

Pmax
A � 2Tr��E2

0	:

Property 2: Alice’s threshold for cheat sensitivity is

Pthresh
A �

1

2Tr����I
E0	
	
;

where �X denotes the projector onto the support of X (the
support of X is the set of eigenvectors of X associated
with nonzero eigenvalues).

Property 3: Bob’s maximum probability of winning is

Pmax
B � 2�Tr

������������
�E0�

p
	2;

Property 4: Bob’s threshold for cheat sensitivity is

Pthresh
B �

1

2�max�E0��	
;

where �max�X	 denotes the largest eigenvalue of X.
An interesting family of protocols is defined by the

choices � � xj0ih0j � �1
 x	j1ih1j and E0 �
1
2x j0ih0j,

where 1=2< x � 1. For these protocols, Pmax
A � 1=2x,

Pmax
B � x, Pthresh

A � 1=2, Pthresh
B � Pmax

B . Thus, Alice runs
a risk of being caught whenever she cheats, while Bob can
cheat up to the maximum amount possible without run-
ning any risk of being caught. This family achieves the
trade-off,

Pmax
A Pmax

B � 1=2: (1)

It is easy to prove that this trade-off is optimal when E0

and � have support in a 2D Hilbert space. In a preprint
227901-2
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version of this Letter, we conjectured that it was optimal
for all higher dimensional Hilbert spaces as
well. Subsequently, this was proven by Ambainis [10]
[who also independently discovered a WCF protocol
achieving the trade-off of Eq. (1)]. It is interesting
to note that, whereas the best known SCF protocols
[8,9] require a qutrit for their implementation, a qubit
suffices here.

A second interesting family of protocols is defined
by the choices � � xj0ih0j � �1
 x	j1ih1j and E0 �
�1
 1

2x	j0ih0j � j1ih1j, with 1=2 � x < 1. For these,
Pmax
A � 1=2x, Pmax

B � 2�4x2
5x�2�1
x	
����������������������
2x�2x
1	

p
,

Pthresh
A � Pmax

A , Pthresh
B � 1=2. In contrast with the previous

example, Bob now runs a risk of being caught whenever
he cheats, while Alice can cheat up to the maximum
amount possible without running any risk of being
caught. The trade-off (1) is no longer attained, however.

It can be shown that no choice of E0 and � can give
Pthresh
A � Pthresh

B � 1=2 [11]. Nonetheless, it is possible to
have Pthresh

A < Pmax
A and Pthresh

B < Pmax
B , i.e., cheat sensitiv-

ity against both parties simultaneously. This occurs, for
example, when � � 1

2 I and E0 �
3
4 j0ih0j �

1
4 j1ih1j, since

in this case Pmax
A � 5=8, Pthresh

A � 1=2, Pmax
B � 1

2 �
��
3

p

4 ’

0:933, and Pthresh
B � 2=3. In this case, if the parties re-

strict themselves to strategies wherein they cannot be
caught cheating, their maximum probability of winning
is even less than 1=

���
2

p
. This example demonstrates that

cheat sensitivity is a useful form of security in its own
right.

Proof of property 1: Assume that Bob is honest. Alice’s
most general cheating strategy is to prepare a state j 0i
instead of the honest j i. (It is obvious from what follows
that she gains no advantage by preparing a mixed state,
and thus no advantage by implementing strategies
wherein she performs measurements on A or entangles
A with a system she keeps in her possession. Moreover,
since she only submits A to Bob when b � 1, any opera-
tion on A she wishes to perform can be done prior to Bob’s
announcement, and thus can be incorporated into the
preparation.) The probability that Bob obtains the
outcome b � 1 is h 0jI � E1j 

0i, and the probabil-
ity that Alice passes Bob’s test for j 1i when she resub-
mits system A is jh 1j 0

1ij
2, where j 0

bi � �I �������
Eb

p
j 0i	=

������������������������������
h 0jI � Ebj 0i

p
. Alice only wins the coin flip

if the outcome is b � 1 and she passes Bob’s test. This
occurs with probability PA � h 0jI � E1j 0ijh 1j 0

1ij
2 �

jh 1jI �
������
E1

p
j 0ij2. We wish to find Pmax

A � supj 0i PA.
Thus, we must maximize the overlap of a normalized
vector j 0i, with the non-normalized vector I �

������
E1

p
j 1i.

Clearly, this is done by taking the two vectors
parallel, so the optimal j 0i is j 0maxi � �I�������
E1

p
j 1i	=

�������������������������������
h 1jI � E1j 1i

p
. Using the definition of j 1i

and applying some straightforward algebra, we find
Pmax
A � 2Tr��E2

1	. As E2
1 � �I 
 E0	

2, we obtain Pmax
A �

2Tr��E2
0	. �
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Proof of property 2: We seek to determine Alice’s
maximum probability of winning assuming that her
probability of being caught cheating is strictly zero.
Alice’s most general cheating strategy is, as above, to
prepare a pure state j 0i. She must pass Bob’s test with
probability one, which implies jh 1j 0

1ij
2 � 1, or j 0

1i �
j 1i to within a phase factor. Multiplying both sides of
this latter equation by I �

������
E1

p

1 (we use X
1 to denote

the inverse of X on its support), and writing j 0
1i and j 1i

in terms of j 0i and j i, we obtain I ��E1
j 0i � 	�I �

�E1
j i	 for some constant 	. It follows that j 0i � 	�I �

�E1
j i	 � 
j�i, where I ��E1

j�i � 0 and 	;
 are con-
strained to ensure that j 0i is normalized. Heuristically,
Alice can pass Bob’s test with probability 1 whenever she
submits a state j 0i that is indistinguishable from j i
within the support of E1. Alice’s probability of winning
in this case is h 0jI � E1j 

0i � j	j2h jI � E1j i �
1
2 j	j

2,
which is maximized when 
 � 0 and 	 �

1=
������������������������������
h jI ��E1

j i
q

. This yields Pthresh
A � 1=2h jI �

�E1
j i � 1=2Tr���E1

	. �
For proving properties 3 and 4, the following definition

and lemma are useful. (For simplicity, we ignore degen-
eracy and support issues which are easily incorporated
but do not change any of our results.)

Definition: Consider a vector j’i 2 H A �H B, a lin-
ear operator X on H A, and a linear operator Y on H B. X
and Y are said to be Schmidt equivalent under j’i if the
matrix elements of X in the eigenbasis of TrB�j’ih’j	 are
the same as the matrix elements of Y in the eigenbasis of
TrA�j’ih’j	.

Lemma[7]: For a vector j’i 2 H A �H B, and a posi-
tive operator E on H B,

TrB��I �
����
E

p
	j’ih’j�I �

����
E

p
	� �

����
!

p
DT

����
!

p
;

where ! � TrB�j’ih’j	, D is the operator on H A that is
Schmidt equivalent to E under j’i, and DT is the trans-
pose of D with respect to the eigenbasis of !.

Proof of lemma: Suppose the biorthogonal decompo-
sition of j’i is j’i �

P
j

�����
�j

p
jeji � jfji. Taking the

trace in terms of the basis fjfiig, we find LHS �P
j;k

����������
�j�k

p
jejihfkjEjfjihekj. By definition, hfkjEjfji �

hekjDjeji and hekjDjeji � hejjD
T jeki. With some

reordering of terms, we obtain LHS �
�
P
j

�����
�j

p
jejihejj	DT�

P
k

������
�k

p
jekihekj	. Noting that

�����
�j

p
and jeji are the eigenvalues and eigenvectors of

����
!

p
; ,

we have the desired result. �
Proof of property 3: Assume that Alice is honest. Bob’s

most general cheating strategy can be implemented as
follows. First, he performs a measurement on system B
of a POVM fE0

kg, which may have an arbitrary number of
outcomes. With probability p0

k � h jI � E0
kj i the out-

come is k and the state of the total system is updated to
j 0

ki � �I �
������
E0
k

p
j i	=

������
p0
k

p
. After the measurement, Bob

can perform a unitary transformation, Uk, on system B,
the nature of which depends on the outcome k that was
227901-3
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recorded. Finally, he must decide whether to announce
b � 0 or 1 based on the result of the measurement; that is,
he must decide on a set S0 of outcomes for which he will
announce b � 0.

Bob’s probability of passing Alice’s test given outcome
k is jh 0jI �Ukj 0

kij
2, so his probability of winning the

coin flip is PB �
P
k2S0 p

0
kjh 0jI �Ukj 

0
kij

2. We must
maximize this with respect to variations in fE0

kg; fUkg,
and S0. By Uhlmann’s theorem [12], supUk jh 0jI �
Ukj 0

kij
2 � F�#0; #0

k	
2, where #b � TrB�j bih bj	, #0

k �
TrB�j 0

kih 
0
kj	, and F�!; $	 � Trj

����
!

p ���
$

p
j is the

fidelity. Thus, we need to compute Pmax
B �

supfE0
kg;S0

P
k2S0 F�#0; p

0
k#

0
k	

2. Since the fidelity squared
is always positive,

P
k2S0 F�#0; p

0
k#

0
k	

2 �P
k F�#0; p

0
k#

0
k	

2. This implies that the optimal S0 is the
entire set of indices: No matter what the outcome k of
Bob’s measurement, he should announce bit 0. Moreover,
by the concavity of the fidelity squared [12], we haveP
k F�#0; p0

k#
0
k	

2 � F�#0;
P
k p

0
k#

0
k	

2 � F�#0; #	2, where
# � TrB�j ih j	. This upper bound is saturated if Bob
makes no measurement upon system B. Using the defi-
nition of j 0i and the lemma, we find that #0 �
2

����
#

p
DT

0

����
#

p
, where D0 is Schmidt equivalent to E0 under

j i. Thus, we can write Pmax
B � F�2

����
#

p
DT

0

����
#

p
; #	2 �

F�2
����
#

p
D0

����
#

p
; #	2, where the second equality follows

from the fact that XT and X have the same eigenvalues.
By the isomorphism between H A and H B induced by
Schmidt equivalence under j i, we have Pmax

B �
F�2

����
�

p
E0

����
�

p
; �	2. Finally, by the definition of the fidelity,

we have Pmax
B � 2�Tr

������������
�E0�

p
	2.

Proof of property 4: We seek to determine Bob’s maxi-
mum probability of winning assuming that his probabil-
ity of being caught cheating is strictly zero. The latter
condition constrains Bob’s most general cheating strategy,
described above, to be such that he must always pass
Alice’s test whenever he announces the outcome b � 0.
That is, we require that fE0

kg, fUkg, and S0 be such that I �
Ukj 

0
ki � j 0i for all k 2 S0. The probability that Bob

wins the coin flip is simply
P
k2S0 p

0
k, so we seek to

determine supfUkg;fE0
kg;S0

�
P
k2S0 p

0
k	, where the optimiza-

tion is subject to the above constraint. We solve the
optimization problem by establishing an upper bound
and demonstrating that it can be saturated. We begin by
using the definitions of j 0

ki and j 0i to rewrite the con-
straint equation as 1

p0
k
�I �Uk

������
E0
k

p
	j ih j�I �Uk

������
E0
k

p
	 �

2�I �
������
E0

p
	j ih j�I �

������
E0

p
	. Tracing over B and applying

the lemma provided above, we obtain
����
#

p
�D0

k	
T ����
#

p
�

2p0
k

����
#

p
DT

0

����
#

p
, where D0

k and D0 are the Schmidt equiva-
lent operators to E0

k and E0, respectively. It follows that
�#D0

k�# � 2p0
k�#D0�#, which, by the isomorphism

between H A and H B induced by Schmidt equivalence
227901-4
under j i, implies ��E
0
k�� � 2p0

k��E0��. Combining
this with

P
k2S0 E

0
k � I, we obtain

P
k2S0 2p

0
k��E0�� �

��, which in turn implies that
P
k2S0 p

0
k �

1=2�max���E0��	 � 1=2�max���E0	. The upper bound
can be saturated while satisfying the constraint if Bob
measures the POVM, fE0

0; E
0
1g, defined by E0

0 �
��E0��=�

max���E0	, and announces b � 0 when he
obtains the outcome associated with E0

0 [13]. Thus,
Bob’s threshold is Pthresh

B � 1=2�max���E0	. �
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