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Orbital Ordering in Frustrated Jahn-Teller Systems with 90� Exchange
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We show that superexchange interactions in frustrated Jahn-Teller systems with transition metal ions
connected by the 90� metal-oxygen-metal bonds (e.g., NaNiO2, LiNiO2, and ZnMn2O4) are much
different from those in materials with the 180� bonds. In the 90�-exchange systems spins and orbitals
are decoupled: the spin exchange is much weaker than the orbital one and it is ferromagnetic for all
orbital states. Though the mean-field orbital ground state is strongly degenerate, quantum orbital
fluctuations select particular ferro-orbital states. We explain the orbital and magnetic ordering observed
in NaNiO2 and show that LiNiO2 is not a spin-orbital liquid.
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orderings can be considered separately from each other.
For layered materials with a triangular lattice, we find a

ions with one electron on the doubly degenerate eg level
form a triangular lattice. The exchange between two
There is a large class of compounds containing tran-
sition metal (TM) ions with an orbital degeneracy—the
so-called Jahn-Teller (JT) systems. Orbital degrees of
freedom and, in particular, their ordering give rise to a
very rich physics [1,2]. The interplay between orbitals and
spins often leads to rather peculiar magnetic structures,
turning, e.g., cubic perovskites such as KCuF3 into quasi-
one-dimensional spin-chain materials [1]. It was recently
suggested that in some JT systems orbitals remain disor-
dered at all temperatures, forming an orbital-liquid state
[3–5]. The suppression of an orbital ordering was dis-
cussed for materials with a simple cubic structure, e.g.,
the perovskite LaTiO3, and was attributed to a strong
anisotropy of orbital interactions and a strong coupling
between orbital and spin excitations. One would expect to
find an even stronger tendency to form an orbital-liquid in
JT compounds with an additional ‘‘geometric frustration’’
[6], which is usually associated with the triangle-based
lattices, such as the pyrochlore lattice of corner sharing
tetrahedra formed by TM ions in spinels (e.g., ZnMn2O4)
and the triangular lattice of low-spin Ni3� ions in the
layered materials LiNiO2 and NaNiO2. Orbital ordering
in such systems is an open issue interesting from both
theoretical and practical points of view, as some of these
compounds are now studied as promising materials for
rechargeable batteries and their performance may be
significantly affected by the JT effect.

An important difference between the geometrically
frustrated oxides and perovskites is the angle between
the oxygen-metal bonds connecting two neighboring TM
ions. While in perovskites this angle is close to 180�, in
the layered materials with the triangular lattice and
spinels it is 90�. Though usually ignored, this difference
has important consequences for orbital and magnetic
orderings. In this Letter, we derive the Hamiltonian of
the 90� exchange and show that orbitals and spins are in
that case essentially decoupled (in contrast to the strong
coupling in perovskites) and that orbital and magnetic
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large number of disordered mean-field orbital ground
states. This strong frustration is, however, lifted by quan-
tum orbital fluctuations that stabilize a ferro-orbital state.
Furthermore, we show that spins in the layers order
ferromagnetically. Our theory explains the orbital and
magnetic ordering observed in NaNiO2 [7] and implies
that LiNiO2, in which no long-range order is observed
[8,9], is unlikely a ‘‘spin-orbital liquid.’’

Orbitals in systems with one electron or hole on doubly
degenerate eg levels are conveniently described by intro-
ducing isospins (or pseudospins) Tj on each TM site j,
which act on the up and down states jTz � � 1

2i identified
with, respectively, d3z2�r2 and dx2�y2 orbitals. Quite gen-
erally, an effective interaction between the orbitals and
spins on pairs of neighboring TM sites i and j has the
form [1]

HST �
X

ij

�JS	SiSj
 � JTTiTj � JST	SiSj
TiTj�; (1)

(for simplicity we do not show here the full structure of
the orbital terms). In perovskites with the 180� bonds the
spin- and orbital-exchange constants JS and JT , as well as
the coupling between the orbitals and spins JST , are all of
the same order of magnitude. This makes the spin and
orbital orderings dependent on each other [1]. The strong
interplay between orbitals and spins is also crucial for the
mechanisms of suppression of these orderings used in
Refs. [4,10,11] to explain an apparent absence of both
orbital and magnetic ordering in LiNiO2 [8,9]. In particu-
lar, in the SU	4
 version of the model Eq. (1) [10,11] both
the spin and orbital interactions are isotropic and JS �
JT � 1

4 JST . The actual situation in the 90� systems is,
however, quite different: the orbital exchange is strongly
anisotropic and JS; JST � JT .

We derive the exchange Hamiltonian using as an
example the layered material NaNiO2, in which Ni and
Na ions occupy consecutive �111� planes of the NaCl
structure [see Fig. 1(a)]. In each plane the low-spin Ni3�
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nearest-neighbor Ni ions in the planes occurs via common
oxygens and the angle between the two oxygen p orbitals
involved in this exchange is 90�. The exchange between
Ni ions from two neighboring planes (separated by a
plane of Na ions) is weak and is neglected here.

The electron hopping in the z direction can occur only
between the pz oxygen and the d3z2�r2 nickel orbitals. The
corresponding hopping amplitude is denoted by t. All
other processes are forbidden by symmetries of the oxy-
gen p and nickel eg orbitals. Thus, the hopping amplitude
in the z direction is t for the jTz � � 1

2i nickel state, and 0
for the jTz � � 1

2i state. More generally, the hopping in
the � direction (� � x; y; z) is nonzero for only the oxy-
gen p� and the nickel d3�2�r2 orbitals. It is convenient to
introduce the isospin operators I� � T 
 n�, where n� are
three unit vectors in the 	Tx; Tz
 plane

nx � �
1

2
ẑz �

���
3

p

2
x̂x; ny � �

1

2
ẑz �

���
3

p

2
x̂x;

nz � ẑz:
(2)

The operators Ix and Iy play the role of Tz for the x and y
directions, i.e., they describe the occupation of, respec-
tively, the d3x2�r2 and d3y2�r2 orbital. The hopping ampli-
tude in the � direction is then t for the jI� � � 1

2i state
and 0 for the jI� � � 1

2i state.
Figure 1(b) shows a plaquette in the �� plane (�;� �

x; y; z) formed by the two neighboring Ni sites 1 and 2 and
the two oxygens shared by the oxygen octahedra sur-
rounding the TM ions. The exchange Hamiltonian is
obtained by expanding the energy in powers of the hop-
ping amplitude t, which is assumed to be much smaller
than the energy � of the electron transfer from O to Ni
and the Hubbard repulsion on oxygen Up. The exchange
interaction appears in the fourth order of the expansion,
and the higher-order terms are neglected here.

We first neglect also the Hund’s rule coupling between
the spins of the oxygen holes. In that case, the 90�

exchange is independent of a spin configuration and in-
volves only orbitals. The orbital-exchange Hamiltonian
for the plaquette in the �� plane has the form

HT � JT I �� � const; (3)

where
(a) (b)
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FIG. 1. The crystal structure of NaNiO2 (a) and a plaquette in
the �� plane (�;� � x; y; z) formed by two nearest-neighbor
Ni ions, 1 and 2, and two oxygens, O1 and O2 (b).
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I �� � 	32 � I�1 
	
3
2 � I�2 
 � 	32 � I�1 
	

3
2 � I�2 
; (4)

and JT is the coupling constant specified below. The
factor 3

2 � I�1 counts the number of oxygen electrons
that can hop to the Ni site 1 along the bond in the �
direction. This number equals 1 if the eg electron is in the
state jI�1 � � 1

2i, and 2 if the electron occupies the state
jI�1 � � 1

2i. [For one hole on eg level, as in Cu2�, the
exchange interaction corresponding to Eq. (4) involves
combinations 	12 � I�
 instead of 	32 � I�
.] The two terms
in Eq. (4) correspond to the two exchange paths on the
plaquette through the oxygens O1 and O2. The orbital
coupling

JT � �
4t2

�2	2��Up

�

2t4

�3 �
2t4Up

�3	2��Up

(5)

is the sum of the contributions of two different mecha-
nisms of the orbital exchange. The first term in Eq. (5) is
due to the exchange via the intermediate states with two
holes on one of the oxygens from the plaquette. The
mechanism resulting in the second term in Eq. (5) even
works for infinite Up, when the two-hole oxygen states
are forbidden. To understand its origin, consider first a
single Ni site inside the oxygen octahedron. The hopping
of electrons from the six oxygens to nickel results in the
energy decrease �E. For two neighboring Ni sites, this
decrease is smaller than 2�E, as the surrounding octahe-
dra share two oxygens and two-hole oxygen states are
forbidden for infiniteUp. The effect of the blocking of the
two-hole states on common oxygens depends on orbital
states of the eg electrons, which gives rise to the orbital
exchange with the coupling constant �	2t4=�3
.

The intermediate states with two holes on one oxygen
result also in a spin exchange. As in such states the holes
occupy two mutually orthogonal orbitals p� and p�, the
spin exchange is possible due only to the Hund’s rule
coupling JH between the spins of the holes (in systems
with the 180� bonds, the spin exchange occurs even for
JH � 0). The corresponding exchange Hamiltonian
involves both spin and isospin operators and, to the
lowest-order in powers of JH, has the form

HTS � �JTSI ���34 � 	S1S2
�; (6)

where JTS � 4t4JH=��2	2��Up

2� and I �� is given

by Eq. (4). The interaction described by Eq. (6) is different
from the 180� exchange in two important respects.
First, since for any orbital state the expectation value
hI ��i > 0, the spin exchange is effectively ferromagnetic
independent of an orbital state: the average spin-exchange
coupling �JTShI ��i< 0 is negative (in agreement with
the Goodenough-Kanamori-Anderson rules). Second,
since JH � Up, the spin-isospin coupling in the 90�

systems is weaker than the orbital exchange, described
by Eq. (3):
227203-2
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JTS
JT

�
JH
Up

2�

	2��Up

:

Thus, in 90�-exchange systems spins and orbitals cannot
strongly influence each other, i.e., they are essentially
decoupled [12].

We can now obtain the Hamiltonian describing orbital
interactions in the Ni layers of NaNiO2 [see Fig. 1(a)]. In
each layer Ni ions form a triangular lattice, the sites of
which lie on intersections of three sets of lines parallel to
the unit vectors exy, eyz, and ezx, as shown in Fig. 2. It is
convenient to identify e�� with the three unit vectors in
the isospace [see Eq. (2)] by nx � eyz, ny � ezx, and
nz � exy. The bonds between the nearest-neighbor sites
j and j� e�� of the triangular lattice are diagonals of the
Ni-O plaquettes lying in the �� plane [cf. Fig. 1(b)].
Hence, the Hamiltonian describing orbital interactions
on the triangular lattice has the form:

HT � JT
X

j

X

���

I�j I
�
j�e��

: (7)

The terms linear in the operators I�j [see Eq. (3)] drop out,
since

P
� I

�
j � 0. The Hamiltonian Eq. (7) is invariant

under the global rotation of isospin operators T� over the
angle 2�

3 around the y axis combined with the rotation of
the triangular lattice over the same angle. This trans-
formation is equivalent to the cyclic permutation of the
indices x, y, and z of the vectors e�� and the isospin
operators I�.

The orbital exchange on a triangular lattice is strongly
frustrated and has a large number of mean-field ground
states. The simplest minimal energy states are the ferro-
orbital states, in which hTji � Tm on all lattice sites,
where m is an arbitrary unit vector in the 	Tx; Tz
 plane
and T � 1

2 . The energy of these states is independent of
orientation of m, even though the Hamiltonian (7) is not
invariant under arbitrary rotations in the 	Tx; Tz
 plane
(this continuous ground-state degeneracy is similar to one
of the three-dimensional ‘‘compass’’ models [1,13]).
Furthermore, there are disordered ground states, which
z

x
xye

zxeyze

FIG. 2. The triangular lattice formed by Ni ions in the �111�
plane. Shown also is a disordered mean-field ground state, in
which the isospins form lines parallel to the unit vector exy,
such that hTzj i is the same on all lattice sites, while the sign of
hTxj i varies arbitrarily from line to line.
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can be obtained from the ferro-orbital states by inverting
the sign of hTxj i on an arbitrarily selected set of lines
parallel to exy (see Fig. 2). Such states are ordered along
the xy lines, but there are no long-range correlations
between the x projections of isospins in the transverse
direction. By circular permutations of the x, y, and z
indices, one can obtain similar states, which are ordered
only along the lines parallel to the eyz and ezx vectors.

This large ground-state degeneracy is lifted by quan-
tum orbital fluctuations (the so-called ‘‘order-from-
disorder’’ mechanism [14,15]). First, we have checked
numerically that disordered states (see Fig. 2) have a
higher energy of the zero-point fluctuations than the
corresponding uniform states. Second, the zero-point
energy of uniform states has six minima at the isospin
orientations m � �nx;�ny;�nz. In the original notation
these are the ferro-orbital states with one of the orbitals
d3z2�r2 , d3x2�r2 , d3y2�r2 , dx2�y2 , dy2�z2 , and dz2�x2 occupied
at each site. Furthermore, the anharmonicity effects [16]
usually stabilize elongated octahedra, i.e., the orbitals
d3z2�r2 , d3x2�r2 , or d3y2�r2 . As was mentioned above, spins
in layers order ferromagnetically.

We note that the standard description of orbital excita-
tions with noninteracting bosons [random phase approxi-
mation (RPA)] is insufficient for calculating quantum
corrections to the ground-state energy of the frustrated
Hamiltonian Eq. (7). In that approximation the orbital
excitation spectrum for the six ground states is one-
dimensional

!q � 3
���
2

p
TJT

�������sin
	q 
m


2

�������; (8)

which is a direct consequence of the absence of long-
range correlations between chains in disordered mean-
field ground states. The gapless one-dimensional
spectrum leads to infrared-divergent fluctuations. To get
rid of them, one has to take into account interactions
between the bosons, which can be consistently done in
the large isospin limit, T � 1. The interactions suppress
quantum fluctuations by opening a gap and inducing a
dispersion in the direction transverse to m. This can be
understood from the fact that the self-energy diagrams
shown in Fig. 3 diverge unless a gap is introduced (in field
theory a similar mechanism is known as a ‘‘dynamical
mass generation’’ [17]). The physical origin of the gap is
the breaking of the continuous ground-state degeneracy
by quantum fluctuations [13]. In the large-T limit
quantum fluctuations are relatively small and the gap
� / JT

����
T

p
is much smaller than the bandwidth W �

3
���
2

p
JTT of the orbital excitations. The dispersion in the

transverse direction is of the order of � [18].
The main conclusions of our theory of the 90� ex-

change (spins are coupled much weaker than orbitals;
the ground state is ordered both ferro-orbitally and ferro-
magnetically) are in agreement with the orbital and mag-
netic structure of the layered compound NaNiO2. This
227203-3



FIG. 3. The self-energy diagrams due to the cubic and the
quartic interactions of orbital excitations, resulting in a gap
opening and a two-dimensional dispersion.
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material shows two transitions: the ferro-orbital ordering
of the d3z2�r2 type at To � 480 K, below which the oxy-
gen octahedra become elongated, and the magnetic tran-
sition at the much lower temperature Ts � 20 K into the
A-type antiferromagnetic state, in which the Ni spins in
the �111� layers are ordered ferromagnetically [7].

It is, therefore, very puzzling that the structurally
identical material LiNiO2 shows neither orbital nor spin
ordering. In principle, we cannot exclude that the quan-
tum orbital fluctuations, which for T � 1

2 are large, de-
stroy the long-range ferro-orbital order (such quantum
melting was discussed in the context of another frustrated
system in Ref. [19]). We note that this possible orbital-
liquid scenario is fundamentally different from those
based on a strong interplay between orbitals and spins
[4,10,11]. Actually, due to the decoupling of spins from
orbitals, this orbital liquid would still have a ferromag-
netic order. In fact, LiNiO2 and NaNiO2 have close values
of theWeiss constant, corresponding to the ferromagnetic
exchange in the Ni layers [7,9].

We think that the puzzles surrounding LiNiO2 indicate
the importance of disorder and electron-lattice interac-
tions, not included in the present theory. As was argued in
Refs. [7,20], the nonstoichiometry of LiNiO2 samples
results in the presence of magnetic Ni ions in the Li
�111� planes, which leads to a strong interlayer coupling
frustrating the three-dimensional antiferromagnetic spin
ordering. This agrees with the recent observation of a
spin-glass-like anomaly in magnetic susceptibility at
�8 K [21]. In NaNiO2 such disorder is much weaker: as
the size difference of Na and Ni ions is larger than that of
Li and Ni ions, the alternating stacking of the Na and Ni
�111� layers is more perfect than that of Li and Ni in
LiNiO2. The larger radius of the Na ion also implies
stronger electron-lattice interactions in NaNiO2 that, in
general, suppress quantum orbital fluctuations and stabi-
lize a ferro-orbital ordering [22,23].

Finally, some frustration of orbital interactions (due to
their anisotropy) may also occur in JT systems with
simple lattices. It is, however, not as strong as in geomet-
rically frustrated materials with the same dimensional-
ity: e.g., while for a cubic lattice the RPA spectrum of
orbital fluctuations is two-dimensional, for a pyrochlore
lattice of corner sharing tetrahedra it is one-dimensional,
implying larger fluctuations in the latter case. The exci-
tations for the d3z2�r2 ferro-orbital state on the pyrochlore
lattice propagate only along two disconnected sets of
227203-4
bonds with the IxIy type of exchange, similarly to the
case of the triangular lattice [see Eq. (8)]. However, this
additional geometric frustration comes together with the
spin-orbital decoupling and, therefore, cannot result in a
spin-orbital liquid state. In general, orbital liquids seem
to be ‘‘singular points’’ in the parameter space of ex-
change interactions (such as spin liquids [24]), which can
be easily turned into ordered states by quantum effects
and electron-lattice interactions. Still, the frustration in
LiNiO2 can play an important role in the strong suppres-
sion of the orbital ordering by tiny deviations from
stoichiometry.
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