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Inhomogeneous Stripe Phase Revisited for Surface Superconductivity
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We consider 2D surface superconductivity in high magnetic fields parallel to the surface. We
demonstrate that the spin-orbit interaction at the surface changes the properties of the inhomogeneous
superconducting Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state that develops above fields given by
the paramagnetic criterion. Strong spin-orbit interaction significantly broadens the range of existence of
the LOFF phase, which takes the form of periodic superconducting stripes running along the field
direction on the surface, leading to the anisotropy of its properties. Our results provide a tool for
studying surface superconductivity as a function of doping.
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ing SSC and studying its properties. Even for insulators pendence is expressed through a complete set of basis
There has been renewed experimental and theoretical
interest in the properties of metallic states localized at a
surface and surface superconductivity (SSC). Surface
states (a.k.a. Tamm’s levels) are well known from the
physics of semiconductors. Numerous angle-resolved
photoemission spectroscopy (ARPES) [1,2] data and
STM studies of Friedel oscillations [3] have now proven
the existence of 2D metallic bands even at surfaces of
metals. The bands are well separated from the bulk and
possess clear-cut 2D Fermi surfaces. For heavy enough
elements, such Fermi surfaces are split further by strong
spin-orbit (SO) interactions. For example, SO energy for
electrons at the Fermi level for Au is estimated at 0.1 eV
[1], while for Li-doped surfaces of Mo and W its value
increases up to 0.13 and 0.5 eV, correspondingly [2].

Islands of a surface superconducting phase were also
observed for the surface-doped tungsten bronzes,
WO3:Na, at Tc � 91:5 K [4]. The ARPES results men-
tioned above suggest that SSC may actually be a rather
widespread phenomenon.

It is noteworthy that the bulk WO3 is an insulator at
low doping [5]. SSC with high Tc was also induced by
both electronic and hole doping of films of the prototype
cuprate material, CaCuO2 [6], in the field-effect transistor
(FET) geometry.

All this makes us believe that the search for SSC
emerges as a new and important development in studies
of the properties of surfaces, especially their metallic
properties. As for the SSC itself, its mechanisms are
unknown and may have nothing to do with the ones in
the bulk. Of a special challenge is the possibility of super-
conductivity at surfaces of ordinary metals, such as Cu [3]
or lithium-doped Mo and W [2], and the influence of
substrate on superconductivity in thin films. Thus, it is
necessary to return to a more careful investigation of the
low temperature properties of surfaces with absorbed
atoms and the role of adsorbed atoms as dopants of
carriers into the metallic surface zone (e.g., see Ref. [2])
like it was discovered for WO3:Na [4].

The major challenge to such a program lies in discern-
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where doping by FET, ideally, provides an effective
control on surface properties, experimental tools to probe
SSC are limited in numbers. The Meissner effect due to
surface superconducting islands would probably never
produce a bulk screening. Thermodynamical probes
are also difficult because of the smallness of contribu-
tions from surface layers of atomic thicknesses. So far,
surface superconductivity has been detected only by
measuring resistivity dependence on temperature in the
perpendicular-to-plane magnetic fields.

In what follows, we focus on destroying SSC by mag-
netic fields applied parallel to the surface. In high enough
fields, one should expect the appearance of a 2D version
of inhomogeneous superconducting state known as
Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase [7]. It
was also shown that two-dimensionality broadens the
region of the LOFF state on the B-T phase diagram [8].
Motivated by experimental findings mentioned above, we
investigate the peculiarities introduced into this phe-
nomenon by the SO effect or non-s-wave pairing.
Ideally, FET would be a very effective doping process.
Different levels of doping would result in different Tc-s.
Our results for SSC in parallel magnetic fields are ex-
pressed in terms of this Tc, providing the tool for compar-
ing theoretical predictions with experiments by
controlling the doping level. Theoretically, there is no
long-range order in a 2D superconductor. However, cor-
relations are destroyed on the exponentially large spatial
scale, R � �0 exp�EF=T�, which would exceed the size of
the film.

We employ below the weak-coupling BCS-like scheme
by assuming that electrons interact via a weak short-
ranged interaction, U�r; r0�. Then Tc � F, and only a
narrow vicinity of the Fermi surface is involved. Thus,
the interaction in the momentum representation can be
taken in the form:

U�p;p0� �
X
l

Ul�l�p��l�p0�; (1)

where p, p0 lie on the Fermi surface; the angular de-
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functions �l�p� (index l enumerates different representa-
tions, as in expansions over the spherical functions in a
3D isotropic model). Superconducting order parameter,
the ‘‘gap,’’ �̂����p� is defined by the equation:

�̂����p� � jUlj�l�p�
Z d3p0

�2��3
�l�p0p0�

�

"
T
X
!n

F���p0; i!n�

#
; (2)

where F���p0; i!n� stands for the Fourier component of
Gor’kov anomalous function:

F̂F���r	 r0; � 	 �0� � 	hT���̂���r; ���̂���r0; �0��i; (3)

and Ul < 0 is a constant in Eq. (1) corresponding to the
selected pairing channel. When the field operators for
electrons are rewritten in momentum space, �̂���r; �� �P

p �̂���p; ��eip�r, Eq. (2) becomes:

�̂����p� � jUlj�l�p�
Z d3p0

�2��3
�l�p0�h�̂���p0; ���̂���	p0; ��i:

(4)
The two operators inside brackets in Eq. (4) anticommute.
In the presence of the center of inversion (CI) the behavior
of �l�p0� at p0 ! 	p0 alone determines the symmetry of
�̂����p� [even (singlet) vs odd (triplet) parity pairing]. For
an s or d pairing the order parameter below Tc has the
form:

�̂����p;q� � ��q; T��i�y����l�p�; (5)

where the momentum q stands for the spatial dependence
of the gap amplitude, ��q; T�.

Surface always breaks the CI symmetry due to the
difference between the ‘‘top’’ and the ‘‘bottom.’’ The
direction bulk-to-surface determines n, a unit vector
normal to the surface. Qualitative changes in the surface
electronic spectrum come about from the well-known
Rashba term [9]:

ĥhSO � ���� p � n�; (6)

which specifies SO interactions at a surface. Equation (6)
lifts the twofold spin degeneracy for band electrons. The
electron spectrum now consists of two branches with two
Fermi surfaces:

��p� � vF�p 	 pF��; pF� � pF

�
1�

�
vF

�
: (7)

Even though SO splitting, 2�pF, may be on a scale of
tenths of eV [1,2], we assume that 2�pF � F. Below we
speak of a strong or weak SO meaning the relative values
of 2�pF and Tc.

Some theory issues regarding superconductivity with-
out CI due to the presence of the SO term Eq. (6) were first
considered in Ref. [10] and more recently in Ref. [11]. The
Gor’kov function (in the momentum representation),
F���p;�0� � 	h�̂���p��̂���	p�i, that stands under the
integral in Eq. (4) represents the wave function for
227002-2
Cooper pairs in the condensate. In the presence of CI
symmetry, the latter can be classified according to the
parity:

F���p;�0� �

�
i��y���f�p�; �f�p� even�
i��d�p� � �̂���̂�y���; �d�p� odd�: (8)

With CI broken by nonzero SO term Eq. (6), the pairing
wave function becomes a mixture of even and odd terms.
It is important to realize that while this mixing changes
physical properties of the SC phase, the gap order pa-
rameter, �̂����p; q�, preserves its singlet form Eq. (5). For
instance, s pairing indeed induces the nonzero triplet
component Eq. (8), as shown in Refs. [10,11]. However,
the latter does not automatically generate a ‘‘triplet’’ gap,
�̂�t

���p; q�. Indeed, rewriting the integration over p0 in
Eq. (4) as d3p0 ! dS0

Fd�, where � � vF�p 	 pF�, we
notice that the triplet F component is odd in particle-
hole transformation, � ! 	�, and, hence, the integrals of
the form Eq. (4) would give only small terms of order
��pF=F� � 1. In other words, while SO interaction may
significantly change spin structure of the normal and
anomalous Green functions, the gap, �̂����p; q�, Eq. (2)
preserves its usual form Eq. (5) with �l�p� � const for
isotropic pairing and �l�p� / �p2

x 	 p2
y� for the d-wave

pairing.
We have calculated Tc numerically for the 2D super-

conductor as a function of magnetic field and spin-orbit
interaction. The result is shown in Fig. 1 for the magnetic
field strictly parallel to the surface (to exclude diamag-
netic currents) [8].

A 1st order phase transition was initially expected
between superconducting and normal states, defined by
comparing their free energies: Fs�T� � Fn 	 �N

B2

2 ,
which would determine the so-called paramagnetic criti-
cal field, Hpar [12] (�N —the spin susceptibility in the
normal phase). The transition from normal to supercon-
ducting state is actually (at lower temperatures) a second
order transition into the LOFF state. The details of the
phase diagram in the vicinity of the Hpar were studied
numerically in Ref. [13]. The LOFF phase boundary is
determined by Eq. (2) or Eq. (4), linearized in ����q� at
an extremal q. The corresponding expression for anoma-
lous function linear in ����q� is obtained by solving the
proper Gor’kov equations:

F���p; q; i!n� � 	 ĜG�0�
�&�p; i!n��̂�'&�p; q�

� ĜG�0�
�'�	pp � q;	i!n�; (9)

where ĜG�0�
���p; i!n� is the normal state Green function at

nonzero ĥhSO�p� of Eq. (6), together with the Zeeman
term, (B�� �B�:

�i!n 	 � 	 ĥhSO�p� 	 (B�̂�B�ĜG�0�
���p; i!n� � 1̂1: (10)

The spin Hamiltonian on the left side, ĤH � ĥhSO�p� �
(B�̂�B, may be easily diagonalized:
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FIG. 1 (color). Calculated Tc as a function of magnetic field
and spin-orbit interaction �pF for a 2D surface superconductor.
All values are in units of Tc0, Tc for the 2D superconductor in
the absence of magnetic field. Thus, B ! (BB=Tc0, hSO !
�pF=Tc0, and Tc ! Tc=Tc0.
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~)�p� 	 � � 	)
																																																															
�2p2

F � 2�pFy(BB � �(BB�2
q

� 	)~�p� (11)

() � �1 for the two branches, pFy is the y-axis projection
of the Fermi momentum, and B k x) with the eigenfunc-
tions, spinors *)�p� of the form:

*)�p� �
1			
2

p

(
1

(BB	iei’�p�pF�
)~�p�

)
: (12)

Substitution of Eq. (9) into Eq. (2) making use of Eq. (5)
results in a rather cumbersome expression which general-
izes the corresponding Eq. (7) of Ref. [8]. We sketch,
therefore, only a few results for the low-T part of the
phase diagram in Fig. 1. Below we discuss the main
changes in the shape of the phase diagram, as introduced
by SO coupling or anisotropy. As for the structure of the
LOFF phase itself, we assume that the numerical analysis
done in Ref. [13] remains applicable; i.e., the order pa-
rameter in the LOFF state has the structure of periodic
stripes.

We state in more detail our results for the limiting
cases of strong and weak SO interaction, which signifi-
cantly simplify all calculations.

(a) Strong SO: �pF � ��0�; subsequent analysis,
which we do not provide here, leads after short calcula-
tions to our final results:

q ? B; jqj �
2(BHc2

vF
;

(BHc2 �
																						
2��0��pF

p
�

																							
2�
,

Tc0�pF

s
:

(13)

One sees that SO interaction not only enhances the value
of Hc2 in comparison with the LOFF for 2D model of
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Ref. [8] , but it also fixes the direction of the structure
vector. The resulting stripe structure is parallel to the
magnetic field direction and has the perpendicular space
periodicity L �

																																
�,=�2Tc0�pF�

p
vF.

According to [11], in the limit of strong SO interaction
the spin susceptibility for parallel fields in superconduct-
ing state �S�T� is nonzero and equal to 1

2�N . This in-
creases the critical paramagnetic field [12] only by a
factor of

			
2

p
, (BHpar � ��0�. Comparing this with

Eq. (13), one sees that strong SO significantly increases
the area occupied by the LOFF state by a factor of																			

�pF=Tc0

p
� 1. Strong SO scattering by defects also

enhances Hc2 [14], but the LOFF state does not exist in
the presence of disorder. Analytical expressions can also
be obtained at low temperatures. For the dependence of
the transition temperature on magnetic field, Tc�B�, one
obtains, at T � Tc0

																						
Tc0=��pF�

p
:

Tc�B� � 5:784�
																												
2�Tc0�pF=,

p
	 (BB�3=��pF�

2; (14)

and

Tc�B� � �T2
c0=�2,(BB�;

Tc0

																						
Tc0=��pF�

p
� T � Tc0:

(15)

The expression for Tc�B� also simplifies for small mag-
netic fields near Tc0:

Tc0 	 Tc

Tc0
�

7.�3�

8�2

�(BB�2

T2
c0

: (16)

Note that while the spin-orbit interaction splits the Fermi
surface, quasiparticles with the same band spin index
Eq. (11) form Cooper pairs in the superconducting state,
so that spin-orbit interaction alone does not change Tc.

(b) Weak SO: �pF � ��0�; unlike in the case of
strong SO, the Cooper pair is formed mainly by pairing
of electrons from the Fermi surfaces with different
spin indices. The LOFF phase in a 2D superconductor
with no SO interaction was first analyzed in Refs. [8,13].
According to Ref. [8], (BHc2 � ��0� �

			
2

p
Hpar, vFq �

2(BHc2.
This result is zero order in spin-orbit interaction. The

direction of q is not fixed with respect to B. Analysis to
the second order in �pF results in an anisotropy term
which again fixes the vector q, as in strong SO case
Eq. (13), perpendicular to the direction of the magnetic
field. Indeed, for the critical field as a function of the
angle � between q and B, we find:

(BHc2 � ��0� 	
�2p2

F

2��0�
cos2�; (17)

i.e., the maximum for Hc2 is reached for � � � �
2 .

For small magnetic fields near Tc, we get

Tc0 	 Tc

Tc0
�

7.�3�

4�2

�(BB�2

T2
c0

: (18)
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A quadratic dependence on B remains valid for fields
(BB � �pF. However, note the factor two difference
between Eqs. (16) and (18): suppression of Tc by magnetic
field turns out to be slower in the case of strong spin-orbit
interaction than in the case when the spin-orbit interac-
tion is weak.

Although a more complicated LOFF periodic super-
structure is possible, the energy considerations of Ref. [7]
have shown in 3D that the stripe phase is energetically
more favorable. A detailed study done numerically in 2D
[13] has shown a more complicated than just a sinusoidal
shape of the order parameter. We assume that the results
of Ref. [13] remain valid in all cases considered above,
so that the LOFF state preserves its striped order parame-
ter form.

The major role of SO is in fixing of the LOFF super-
structure. Anisotropy fixes the orientation of the LOFF
stripes as well (see below). A 1st order reorientation
transition may be expected corresponding to an abrupt
change in the direction of the superconducting stripes
(similar to a spin-flop transition) as the magnetic field
is rotated in the 2D plane.

In the above discussion so far we have neglected any
anisotropy at all. Meanwhile, the anisotropy is, of course,
important. We address the issue of the effect of pinning
stripe direction to the particular crystal axis only for the
d-wave order parameter, since the latter is intrinsically
anisotropic. Stripes may orient themselves along the di-
rections of the gap maximums. It can be easily shown that
Hc2 for the dx2	y2 superconducting order parameter takes
the form (BHc2 �

�
, e1=4Tc0. The critical field for the

LOFF phase of d wave is somewhat higher than for s
wave [without the SO term Eq. (7)], as superconducting
stripes get pinned to the crystal axes by the form of the
order parameter and the direction of the magnetic field.
Reorientation transition/twinning is also expected for
any other cause.

In summary, we have shown (i) that inhomogeneous
state in parallel fields extends considerably the low tem-
perature phase diagram of surface superconductivity with
increased spin-orbit interaction; (ii) all SC characteristics
of the phase diagram in the �B; T� plane can be expressed
in terms of Tc0, the critical temperature in the absence of
the field, which may also serve as a method to extract the
value of the SO interaction; (iii) LOFF state properties
are strongly anisotropic in the plane with respect to field
direction—this, for example, can be seen by measuring
the anisotropy of the ac susceptibility signal; (iv) the
indispensible feature of the LOFF state must be the reori-
entation transitions at the field rotation in the plane
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caused by locking of the LOFF order parameter by
anisotropy.
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