
VOLUME 89, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 25 NOVEMBER 2002
Effective Temperature in Driven Vortex Lattices with Random Pinning
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We study numerically correlation and response functions in nonequilibrium driven vortex lattices
with random pinning. From a generalized fluctuation-dissipation relation, we calculate an effective
transverse temperature in the fluid moving phase. We find that the effective temperature decreases with
increasing driving force and becomes equal to the equilibrium melting temperature when the dynamic
transverse freezing occurs. We also discuss how the effective temperature can be measured experimen-
tally from a generalized Kubo formula.
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vortex phase at high velocities can be an anisotropic we calculate the fluctuation-dissipation relation (FDR),
Whether and how can one extend thermodynamic con-
cepts to nonequilibrium systems is a very important
challenge in theoretical physics. Many definitions of non-
equilibrium temperatures have been proposed in different
contexts, but it has been rarely checked if they conform
with the expected properties of a temperature.

Cugliandolo, Kurchan, and Peliti [1] have introduced
the notion of time-scale dependent ‘‘effective tempera-
tures’’ Teff from a modification of the fluctuation-
dissipation theorem (FDT) in slowly evolving out of
equilibrium systems. Teff is defined from the inverse slope
of the parametric plot of the integrated response against
the correlation function of a given pair of observables
when the latter is bounded or from half the inverse slope
of the parametric plot of the integrated response against
the displacement when the correlation is unbounded. This
definition yields a bona fide temperature in the thermody-
namic sense since it can be measured with a thermometer,
it controls the direction of heat flow for a given time
scale, and it satisfies a zeroth law within each time scale.
Teff was found analytically in mean-field glassy models
[1–3] and it was successfully studied in structural
and spin glasses, both numerically [4] and experimentally
[5], in granular matter [6,7], and in weakly sheared
fluids [8,9].

In their study of driven vortex lattices in type II super-
conductors, Koshelev and Vinokur [10] have defined a
‘‘shaking’’ temperature Tsh from the fluctuating force
felt by a vortex configuration moving in a random pin-
ning potential. This leads to the prediction of a dynamic
phase transition between a liquidlike phase of vortices
moving at weak driving forces and a crystalline vortex
lattice moving at strong forces, when Tsh equals the
equilibrium melting temperature of the vortex system
[10,11]. However, later work [12–14] has shown that the
perturbation theory used in [10] breaks down and that the
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transverse glass instead of a crystal. In spite of this, the
shaking temperature introduced in [10] has been a useful
qualitative concept, at least phenomenologically. Indeed,
the dynamic transitions and moving vortex phases dis-
cussed in [10–14] have been observed experimentally
[15] and in numerical simulations [16,17].

In this Letter, we apply the definition of Teff based on
the modifications of the FDT to driven vortex lattices
within the fluid moving phase. We compare our results
with the shaking temperature of [10] and discuss how to
obtain Teff experimentally from measurements of trans-
verse voltage noise and transverse resistance.

The equation of motion of a vortex in position Ri is

�
dRi

dt
� �

X
j�i

riUv�Rij� �
X
p

riUp�Rip� � F� �i�t�;

where Rij � jRi �Rjj is the distance between vortices
i; j, Rip � jRi �Rpj is the distance between the vortex i
and a pinning site at Rp, � is the Bardeen-Stephen
friction, and F � d�0

c J� z is the driving force due to
a uniform current density J. The effect of a thermal
bath at temperature T is given by the stochastic force
�i�t�, satisfying h
�i �t�i � 0 and h
�i �t�


�0

j �t0�i �
2�T��t� t0��ij���0 . (kB � 1 henceforth.) We model a
2D thin film superconductor of thickness d and size L
by considering a logarithmic vortex-vortex interaction
potential: Uv�r� � �Av ln�r=��, with Av � �2

0=8��
and � � 2�2=d > L [17]. The vortices interact with a
random distribution of attractive pinning centers with
Up�r� � �Ape

��r=rp�2 . Length is normalized by rp, en-
ergy by Av, and time by � � �r2p=Av. We consider Nv
vortices and Np pinning centers in a rectangular box of
size Lx � Ly. Moving vortices induce an average macro-
scopic electric field E � B

c V � z, with V � 1
Nv

P
i dRi=dt.

To analyze the validity and modifications of the FDT,
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FIG. 1. Averaged transverse quadratic mean displacement
�x�t� (a) and transverse response function !x�t� (b) for
Ap � 0:2, T � 0:01, and V � 0:11 in the smectic flow regime.
(c) Transverse FDR !x�t� vs �x�t� for T � 0:01. The dashed
line indicates �x=2T, with T � 0:01 the thermal bath tempera-
ture. Teff�T� is obtained from the linear fit to !x�t� for �x > r2p
(dash-dotted line). We find that Txeff�T� � Txeff�0� � T, where
Txeff�0� is the corresponding transverse effective temperature for
T � 0 (inset).
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i.e., the relationship between the displacement and the
response functions of a given observable. It is convenient
to choose [4] the observable A��t� �

1
Nv

PNv
i�1 sir

�
i �t�,

where si � �1; 1 are random numbers with si � 0 and
sisj � �ij, r

�
i � R�i � R�c:m: with � � x; y and Rc:m: is

the center of mass coordinate. We study separately the
FDR in the transverse and parallel directions with respect
to F � Fy. The autocorrelation function of the observable
A� is

C��t; t0� � hA��t�A��t0�i �
1

N2
v

XNv
i�1

hr�i �t�r
�
i �t0�i; (1)

since the r�i are independent of the si in the absence of the
perturbation. The integrated response function !� for the
observable A� is obtained by applying a perturbative
force f�i � "si�̂� (where �̂� � x̂x; ŷy) at time t0 and keeping
it constant for all subsequent times on each vortex:

!��t; t0� � lim
"!0

1

"

hA��t�i" � hA��t�i"�0�: (2)

We see the convenience of using random si: it decreases
the statistical error in the determination of the response
and the perturbation introduced by a random force in the
system is weak [4]. We then analyze the FDR,

!��t; t0� �
1

2T�eff�t; t0�
���t; t0�; (3)

where ���t; t0��N
�1
v

P
ihjr

�
i �t��r

�
i �t0�j

2i�Nv
C��t; t��
C��t0; t0� � 2C��t; t0�� is the quadratic mean displace-
ment in the direction �̂�. For a system in equilibrium at
temperature T, the FDT requires that Txeff � Tyeff � T. In a
nonequilibrium system, such as the driven vortex lattice
with pinning, the FDT does not apply. Since we are
interested in the stationary states reached by the driven
vortex lattice, where aging effects are stopped [8,9,18],
then all observables depend on the difference t� t0, if we
choose t0 long enough to ensure stationarity. From the
parametric plot of !��t� vs ���t�, we define the effective
temperature T�eff�t� using Eq. (3), provided T�eff�t� is a
constant in each time scale [1].

We study the transverse and longitudinal FDR for the
moving vortex lattice as a function of driving force F for
different values of Ap, nv, and T. The simulations are
performed with pinning density np � Npr

2
p=LxLy � 0:14

in a box with Lx=Ly �
���
3

p
=2 and Nv � 256. We con-

sider Ap=Av � 0:35; 0:2; 0:25; 0:1, nv � Nvr2p=LxLy �
0:05; 0:07, and T � 0:01. We impose periodic boundary
conditions with the algorithm of Ref. [19]. Averages are
evaluated during 80 000 steps of �t � 0:1� after
65 536 steps for reaching stationarity. To calculate the
response function !��t�, given by Eq. (2), we simulate
two replicas of the system, with the perturbative force
f�i � "si�̂� applied to one of them. Starting from the same
initial condition, we let the perturbed and unperturbed
system evolve for 5000 time steps and calculate A��t�"
and A��t�"�0, respectively. The replicas then evolve again
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after changing the realization of the random factors si
and taking the final configuration of the unperturbed
system as the new common initial condition. Therefore,
16 realizations of fsig have been considered in the aver-
ages. From this we get hA��t�i", both for " � 0 and " � 0,
and thereby the response function !��t� is determined.We
have verified linearity of hA��t�i" with " in the range

0:0002; 0:01� and then we have used " � 0:005 � Fc in
our calculations.

At T � 0, there are three different dynamical regimes
[17] when increasing F above the critical depinning force
Fc: two fluid phases with plastic flow for Fc < F < Fp
and smectic flow for Fp < F < Ft and a transverse solid
for F > Ft. For fixed pinning density np, the character-
istic forces Fc, Fp, and Ft depend on the disorder strength
Ap and vortex density nv. We start by analyzing the FDR
in the smectic flow regime for different values of Ap, nv,
and T. In Fig. 1(a) we show the typical transverse qua-
dratic mean displacements �x�t� and in Fig. 1(b) the
integrated transverse response !x�t� for this dynamical
regime. In Fig. 1(c) we show the FDR parametric plot of
!x�t� against �x�t�. We see that the equilibrium FDT does
not apply in general, but two approximate linear relations
exist for �x�t�< 0:05r2p and for �x�t� > r2p, with a non-
linear crossover between them. Following Eq. (3), we find
that the short displacements region corresponds to the
bath temperature T � 0:01, and therefore the FDTapplies
in the transverse direction only for short times. For the
227001-2
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large displacements region we get an effective transverse
temperature Txeff�T� � 0:045 > T. In the inset of Fig. 1(a)
we show the FDR for T � 0. Comparing the results for
different T, we find Txeff�T� � Txeff�0� � T. In Fig. 2 we
analyze the FDR for the longitudinal direction, for the
same time scales as Fig. 1. Figure 2(a) shows the quadratic
mean displacement �y and Fig. 2(b) shows the response
!y. In Fig. 2(c) we obtain the corresponding FDR. We
observe that the equilibrium FDT applies for �y�t�<
0:05r2p at the bath temperature T. There is not a constant
Tyeff�t� for larger displacements, because there is super-
diffusive behavior with �y � t
 , 
 > 1, see [17],
while !y � t.

In Fig. 3 we show the calculated transverse effective
temperature Txeff for T � 0 as a function of voltage (i.e.,
average velocity, V). We observe that above the critical
force, Txeff is a decreasing function of V that reaches a
value close to the equilibrium melting temperature of the
unpinned system, Tm � 0:007 [20], when the system ap-
proaches the transverse freezing transition at F � Ft
(obtained from the vanishing of the transverse diffusion
Dx, shown in the inset). It becomes very difficult to
compute Txeff for driving forces F > Ft, since �x and !x
are bounded at T � 0 while for finite T there are very long
relaxation times involved. We leave the interesting case of
obtaining Txeff�T� for F > Ft for future study.

In Fig. 4 we show the dependence of Txeff with pinning
amplitude Ap and vortex density nv. In all the cases we
observe that Txeff ! Tm when F ! Ft, even when Ft de-
pends on Ap and nv. The shaking temperature of [10]
predicts Tsh � �V=A2

p�
�1, which actually corresponds to

the limit of noninteracting vortices or incoherent motion,
since it is a single vortex result [14]. As we show in the
FIG. 2. Averaged longitudinal quadratic mean displacement
�y�t� (a) and longitudinal response function !y�t� (b) for
Ap � 0:2, T � 0:01, and V � 0:11 in the smectic flow regime.
(c) Longitudinal FDR !y�t� vs �y�t� for T � 0:01. The dashed
line indicates �y=2T, with T � 0:01.
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inset of Fig. 4, we find that a plot of all the curves
as Txeff�0� vs V=A2�)

p better follows ) � 0:5 instead of
) � 0. In the case of motion of a rigid lattice, one can
apply the one particle result to a Larkin-Ovchinikov
correlation volume, where the pinning force summation
gives an effective pinning amplitude

������
Ap

p
, and therefore

) � 1 in this limit. It is noteworthy that the value we find
is intermediate between these two limits.

We now show that the same Txeff can be obtained from
experimentally accessible quantities such as the trans-
verse resistivity and the voltage fluctuations. If Txeff is
well defined in a given time scale, we can expect a
generalized Kubo formula to hold [21],

Rx�t� �
Nv
Txeff�t�

Z t

0
dt0hVx�t�Vx�t

0�i; (4)

where Rx�t� � h
dVx�t��=d"i"�0 � h
dVx�0��=d"i"�0 is
the linear transverse resistance. From a parametric plot
of the integrals of the two sides of Eq. (4), we again find a
linear slope equal to 1=T for t < r2p=Dx and a second
linear slope of 1=Txeff for t > r2p=Dx. In Fig. 3 we compare
the two effective transverse temperatures obtained using
Eqs. (3) and (4). We see that they are similar within the
error bars. The shaking temperature Tsh defined in Eq. (3)
of Ref. [10] is proportional to the time integral of the
correlation function of the pinning force Fpin �P
i;p fip�t�. Tsh can be obtained from Eq. (4) if we replace

Rx�t� with the single vortex value R0 � 1=� and the
integral of the Vx�t� correlation function is taken for all
t [since for the transverse direction Vx�t� / F

x
pin�t�]. In

other words, Tsh of [10] corresponds to taking the average
slope in the parametric plot of the generalized Kubo
formula [or in the parametric plot of the FDR shown
in Fig. 1(c)]; see also [22]. The approach followed
here permits defining an effective temperature which
takes into account all the information on its time-scale
FIG. 3. Transverse effective temperature Txeff vs voltage V for
Ap � 0:35, T � 0, and nv � 0:07, using the diffusion relation
(solid diamonds) and a generalized Kubo formula (open dia-
monds). Inset: Transverse diffusion constant Dx vs V. Dashed
lines indicate the transverse freezing transition at F � Ft and
the dash-dotted lines indicate the melting temperature of the
unpinned system Tm � 0:007.
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FIG. 4. Transverse effective temperature Txeff vs voltage V, for
different values of pinning amplitude Ap, and vortex density
nv, at T � 0. Ap � 0:35, nv � 0:05 (�), Ap � 0:35, nv � 0:07
(�), Ap � 0:2, nv � 0:05 (�), Ap � 0:2, nv � 0:07 (4), Ap �
0:1, nv � 0:05 (�), Ap � 0:1, nv � 0:07 (�). The inset shows
Txeff vs V=A2�)

p , with ) � 0:5.
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dependence that allows for a thermodynamic interpreta-
tion of Teff . In this way, we see clearly that there is a
nontrivial value of the transverse effective temperature
Txeff for time scales t > r2p=Dx. We also observe in the
longitudinal direction y that Tyeff�t� is very different, since
the system is strongly driven out of equilibrium in this
direction [23]. Furthermore, we find that the short-range
correlations of the moving fluid are important and give a
nontrivial dependence with disorder strength Ap. Beside
this, we have demonstrated that in the moving fluid phase
Txeff satisfies two important results of [10]: (i) additivity of
temperatures, Txeff�T� � Txeff�0� � T and (ii) dynamic
freezing occurs when Txeff�T� � Tm. The generalized
Kubo formula of Eq. (4) suggests that Txeff can be obtained
experimentally from measurements of transverse voltage
noise and time-dependent transverse resistivity [24]. It
will be interesting to have such experiments to test quan-
titatively the dynamic freezing transition. Finally, we
stress that a complete dynamic theory of the moving
vortex system has to capture the features here described.

We acknowledge discussions with A. Barrat,
L. Berthier, J. Kurchan, T. Giamarchi, P. Le Doussal,
M. C. Marchetti, and V. M. Vinokur. We acknowledge
financial support from the Argentina-Francia cooperation
SETCIP-ECOS, Project No. A01E01, ICTP (Trieste),
ANPCyT (PICT99-03-06343), Conicet, and the
Director, Office of Advanced Scientific Computing
Research, Division of Mathematical, Information, and
Computational Sciences, U.S. DOE Contract No.
DE-AC03-76SF00098.
2270
[1] L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E
55, 3898 (1997); L. F. Cugliandolo and J. Kurchan,
J. Phys. Soc. Jpn. 69, 247 (2000).
01-4
[2] L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173
(1993); J. Phys. A 27, 5749 (1994).

[3] Th. M. Nieuwenhuizen, J. Phys. A 31, L201 (1998).
[4] S. Franz and H. Rieger, J. Stat. Phys. 79, 749 (1995);

G. Parisi, Phys. Rev. Lett. 79, 3660 (1997); J.-L. Barrat
and W. Kob, Europhys. Lett. 46, 637 (1999); R. Di
Leonardo et al., Phys. Rev. Lett. 84, 6054 (2000).

[5] T. S. Grigera and N. Israeloff, Phys. Rev. Lett. 83, 5038
(1999); L. Bellon et al., Europhys. Lett. 53, 511 (2000);
D. Hérisson and M. Ocio, Phys. Rev. Lett. 88, 257202
(2002).

[6] A. Barrat et al., Phys. Rev. Lett. 85, 5034 (2000);
H. Maske and J. Kurchan, Nature (London) 415, 614
(2002).

[7] A. Barrat et al., cond-mat/0205285.
[8] L. Berthier et al., Phys. Rev. E 61, 5464 (2000).
[9] J.-L. Barrat and L. Berthier, Phys. Rev. E 63, 12 503

(2001); L. Berthier and J.-L. Barrat, J. Chem. Phys. 116,
6228 (2002).

[10] A. E. Koshelev and V. M. Vinokur, Phys. Rev. Lett. 73,
3580 (1994).

[11] I. Aranson, A. E. Koshelev, and V. M. Vinokur, Phys. Rev.
B 56, 5136 (1997).

[12] T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 76, 3408
(1996); P. Le Doussal and T. Giamarchi, Phys. Rev. B 57,
11 356 (1998).

[13] L. Balents, M. C. Marchetti, and L. Radzihovsky, Phys.
Rev. B 57, 7705 (1998).

[14] S. Scheidl and V. M. Vinokur, Phys. Rev. B 57, 13 800
(1998).

[15] S. Bhattacharya and M. J. Higgins, Phys. Rev. Lett. 70,
2617 (1993); U. Yaron et al., Nature (London) 376, 743
(1995); M. C. Hellerqvist et al., Phys. Rev. Lett. 76, 4022
(1996); F. Pardo et al., Nature (London) 396, 348 (1998).

[16] K. Moon et al., Phys. Rev. Lett. 77, 2778 (1996); S. Ryu
et al., ibid. 77, 5114 (1996); N. Grønbech-Jensen et al.,
ibid. 76, 2985 (1996); C. Reichhardt et al., ibid. 78, 2648
(1997); D. Domı́nguez et al., ibid. 78, 2644 (1997); C. J.
Olson et al., ibid. 81, 3757 (1998); D. Domı́nguez, ibid.
82, 181 (1999).

[17] A. B. Kolton et al., Phys. Rev. Lett. 83, 3061 (1999); Phys.
Rev. B 62, R14 657 (2000); Phys. Rev. Lett. 86, 4112
(2001).

[18] L. F. Cugliandolo et al., Phys. Rev. Lett. 78, 350
(1997).

[19] N. Grønbech-Jensen, Int. J. Mod. Phys. C 7, 873 (1996);
Comput. Phys. Commun. 119, 115 (1999).

[20] J. M. Caillol et al., J. Stat. Phys. 28, 325 (1982).
[21] H. Yoshino, Phys. Rev. Lett. 81, 1493 (1998).
[22] I. K. Ono et al., Phys. Rev. Lett. 89, 095703 (2002).
[23] Also in granular matter under gravity [7] and in sheared

fluids [9], Teff has been obtained only in the direction
perpendicular to the driving force.

[24] Voltage noise measurements may depend on the configu-
ration of contacts; see J. Clem, Phys. Rep. 75, 1 (1981). To
test correctly the Kubo formula, the same voltage con-
tacts have to be used for the measurements of transverse
voltage correlations and transverse resistance. Careful
alignment of contacts in the direction perpendicular to
the driving current will be crucial.
227001-4


